[Comportement asymptotique des solutions d'équations d'évolution stochastiques des fluides de grade deux]
Dans cette Note nous montrons que, sous des hypothèses appropriées sur les données, on peut construire une suite de solutions fortes des équations stochastiques pour les fluides de grade deux qui convergent vers les solutions fortes probabilistes des équations stochastiques de Navier–Stokes quand le module de contrainte α tend vers zéro.
In this Note we show that under suitable conditions on the data we can construct a sequence of solutions of the stochastic second grade fluid that converges to the probabilistic strong solution of the stochastic Navier–Stokes equations when the stress modulus α tends to zero.
Accepté le :
Publié le :
Paul André Razafimandimby 1 ; Mamadou Sango 1
@article{CRMATH_2010__348_13-14_787_0, author = {Paul Andr\'e Razafimandimby and Mamadou Sango}, title = {Asymptotic behavior of solutions of stochastic evolution equations for second grade fluids}, journal = {Comptes Rendus. Math\'ematique}, pages = {787--790}, publisher = {Elsevier}, volume = {348}, number = {13-14}, year = {2010}, doi = {10.1016/j.crma.2010.05.001}, language = {en}, }
TY - JOUR AU - Paul André Razafimandimby AU - Mamadou Sango TI - Asymptotic behavior of solutions of stochastic evolution equations for second grade fluids JO - Comptes Rendus. Mathématique PY - 2010 SP - 787 EP - 790 VL - 348 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2010.05.001 LA - en ID - CRMATH_2010__348_13-14_787_0 ER -
%0 Journal Article %A Paul André Razafimandimby %A Mamadou Sango %T Asymptotic behavior of solutions of stochastic evolution equations for second grade fluids %J Comptes Rendus. Mathématique %D 2010 %P 787-790 %V 348 %N 13-14 %I Elsevier %R 10.1016/j.crma.2010.05.001 %G en %F CRMATH_2010__348_13-14_787_0
Paul André Razafimandimby; Mamadou Sango. Asymptotic behavior of solutions of stochastic evolution equations for second grade fluids. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 787-790. doi : 10.1016/j.crma.2010.05.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.05.001/
[1] Stochastic Navier–Stokes equations, Acta Applicandae Mathematicae, Volume 38 (1995), pp. 267-304
[2] Equations Stochastiques du Type Navier–Stokes, Journal of Functional Analysis, Volume 13 (1973), pp. 195-222
[3] On second grade fluids with vanishing viscosity, C. R. Acad. Sci. Paris, Ser. I, Volume 328 (1999) no. 12, pp. 1241-1246
[4] J.-Y. Chemin, Perfect Incompressible Fluids, Clarendon-Oxford University Press
[5] Weak and classical solutions of a family of second grade fluids, Int. J. Non-Linear Mechanics, Volume 32 (1997) no. 2, pp. 317-335
[6] Existence and uniqueness for fluids of second grade, College de France Seminar Pitman, Volume 109 (1984), pp. 178-197
[7] Thermodynamics, stability and boundedness of fluids of complexity two and fluids of second grade, Arch. Rat. Mech. Anal., Volume 56 (1974) no. 3, pp. 191-252
[8] Remarques sur la limite pour les fluides de grade 2, C. R. Acad. Sci. Paris, Ser. I, Volume 334 (2002) no. 1, pp. 83-86
[9] Stochastic 2-D Navier–Stokes equations, Appl. Math. Optim., Volume 46 (2002), pp. 31-53
[10] The Nonlinear Field Theory of Mechanics, Handbuch der Physik, vol. III, Springer-Verlag, Berlin, 1975
[11] P.A. Razafimandimby, M. Sango, Weak solutions of a stochastic model for two-dimensional second grade fluids, Boundary Value Problems, vol. 2010, Article ID 636140, p. 47
[12] Strong solution for a stochastic model of two-dimensional second grade fluids: Existence, uniqueness and stability http://users.aims.ac.za/~paul/publications.html (Preprint:)
[13] Magnetohydrodynamic turbulent flows: Existence results, Physica D: Nonlinear Phenomena, Volume 239 (2010) no. 12, pp. 912-923
Cité par Sources :
Commentaires - Politique