[Problème de Neumann pour une équation élliptique non lineaire dans un domaine perforé]
Nous étudions le problème de Neumann pour un opérateur élliptique de type Leray–Lions dans un domaine , , où Ω est un ouvert dans , est un ensemble fermé situé au voisinage d'une variété differentiable Γ de dimension à l'intérieur de Ω. Nous étudions the comportement asymptotique de quand converge vers Γ dans un sens approprié.
We investigate the Neumann problem for a nonlinear elliptic operator of Leray–Lions type in , , where Ω is a domain in , is a closed set located in the neighborhood of a -dimensional manifold Γ lying inside Ω. We study the asymptotic behavior of as , when the set tends to Γ.
Accepté le :
Publié le :
Mamadou Sango 1
@article{CRMATH_2006__342_8_563_0, author = {Mamadou Sango}, title = {Neumann problem for a quasilinear elliptic equation in a varying domain}, journal = {Comptes Rendus. Math\'ematique}, pages = {563--568}, publisher = {Elsevier}, volume = {342}, number = {8}, year = {2006}, doi = {10.1016/j.crma.2006.02.011}, language = {en}, }
Mamadou Sango. Neumann problem for a quasilinear elliptic equation in a varying domain. Comptes Rendus. Mathématique, Volume 342 (2006) no. 8, pp. 563-568. doi : 10.1016/j.crma.2006.02.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.02.011/
[1] Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal., Volume 19 (1992) no. 6, pp. 581-597
[2] Homogenization in open sets with holes, J. Math. Anal. Appl., Volume 71 (1979) no. 2, pp. 590-607
[3] Le problème de la passoire de Neumann, Rend. Sem. Mat. Univ. Politec. Torino, Volume 43 (1985/86) no. 3, pp. 427-450
[4] Which sequences of holes are admissible for periodic homogenization with Neumann boundary conditions, A tribute to J.L. Lions, ESAIM Control Optim. Calc. Var., Volume 8 (2002), pp. 555-585
[5] Boundary Value Problems in Domains with a Fine-Grained Boundary, Naukova Dumka, Kiev, 1974 (in Russian)
[6] Sobolev Spaces, Springer-Verlag, New York, 1985
[7] The Neumann sieve, Isola d'Elba, 1983 (Res. Notes in Math.), Volume vol. 127, Pitman, Boston, MA (1985), pp. 24-32
[8] Mathematical Problems in Elasticity and Homogenization, North-Holland, Amsterdam, 1992
[9] Boundary value problems in domains containing perforated walls, Nonlinear Partial Differential Equations and their Applications, Collège de France Seminar, vol. III, Paris, 1980/1981, Res. Notes in Math., vol. 70, Pitman, Boston, MA, London, 1982, pp. 309-325
Cité par Sources :
Commentaires - Politique