Comptes Rendus
Partial Differential Equations
Renormalized solutions of the fractional Laplace equation
[Solutions renormalisées de l'équation de Laplace fractionnaire]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 759-762.

Nous introduisons une notion de solution renormalisée pour les problèmes du genre β(u)+(Δ)s/2uf in Rn, fL1(Rn). Ici β est un graphe maximal monotone dans R, et (Δ)s/2, s(0,2), est l'opérateur de Laplace fractionnaire qui est un représentant type des diffusions de Lévy. Nous montrons que le problème est bien posé dans le cadre des solutions renormalisées. Le problème de Cauchy pour l'équation d'évolution associée peut alors se traiter par les techniques de semigroupes.

We define renormalized solutions for the problems of the kind β(u)+(Δ)s/2uf in Rn, fL1(Rn). Here β is a maximal monotone graph in R, and (Δ)s/2, s(0,2), is the fractional Laplace operator which is a particular case of Lévy diffusions. We prove well-posedness in the framework of renormalized solutions. Then the Cauchy problem for the associated evolution equations can be solved using the Crandall–Liggett semigroup technique.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.05.006

Nathaël Alibaud 1, 2 ; Boris Andreianov 1 ; Mostafa Bendahmane 3

1 Laboratoire de mathématiques, UMR CNRS 6623, 16, route de Gray, 25030 Besançon cedex, France
2 École nationale supérieure de mécanique et des microtechniques, 26 chemin de l'Épitaphe, 25030 Besançon cedex, France
3 Institut de mathématiques de Bordeaux, université Bordeaux 2, 3ter, place de la Victoire, 33076 Bordeaux, France
@article{CRMATH_2010__348_13-14_759_0,
     author = {Natha\"el Alibaud and Boris Andreianov and Mostafa Bendahmane},
     title = {Renormalized solutions of the fractional {Laplace} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {759--762},
     publisher = {Elsevier},
     volume = {348},
     number = {13-14},
     year = {2010},
     doi = {10.1016/j.crma.2010.05.006},
     language = {en},
}
TY  - JOUR
AU  - Nathaël Alibaud
AU  - Boris Andreianov
AU  - Mostafa Bendahmane
TI  - Renormalized solutions of the fractional Laplace equation
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 759
EP  - 762
VL  - 348
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2010.05.006
LA  - en
ID  - CRMATH_2010__348_13-14_759_0
ER  - 
%0 Journal Article
%A Nathaël Alibaud
%A Boris Andreianov
%A Mostafa Bendahmane
%T Renormalized solutions of the fractional Laplace equation
%J Comptes Rendus. Mathématique
%D 2010
%P 759-762
%V 348
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2010.05.006
%G en
%F CRMATH_2010__348_13-14_759_0
Nathaël Alibaud; Boris Andreianov; Mostafa Bendahmane. Renormalized solutions of the fractional Laplace equation. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 759-762. doi : 10.1016/j.crma.2010.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.05.006/

[1] Ph. Bénilan; L. Boccardo; Th. Gallouët; R. Gariepy; M. Pierre; J.L. Vázquez An L1-theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), Volume 22 (1995) no. 2, pp. 241-273

[2] Ph. Bénilan, M.G. Crandall, A. Pazy, Nonlinear evolution equations governed by accretive operators, Preprint

[3] S. Cifani; E.R. Jacobsen; K.H. Karlsen The discontinuous Galerkin method for fractal conservation laws, IMA J. Numer. Anal. (2010) | DOI

[4] G. Dal Maso; F. Murat; L. Orsina; A. Prignet Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), Volume 28 (1999) no. 4, pp. 741-808

[5] K.H. Karlsen, F. Petitta, S. Ulusoy, A duality approach to the fractional Laplacian with measure data, Preprint, 2010

[6] F. Murat, Équations elliptiques non linéaires avec second membre L1 ou mesure, Actes du 26ème Congrès d'Analyse Numérique, Les Karellis, France, 1994

  • Kheireddine Biroud; El-Haj Laamri On some elliptic fractional s(·) problems with singular potential and general datum, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 33 (2024) no. 3, p. 681 | DOI:10.5802/afst.1785
  • Ying Li; Chao Zhang Entropy solutions to the fully nonlocal diffusion equations, Mathematische Nachrichten, Volume 297 (2024) no. 11, p. 4003 | DOI:10.1002/mana.202400130
  • Houede Dofyniwassouani Alain; Ouedraogo Adama; Ly Ibrahim Continuous dependence of renormalized solution for convection-diffusion problems involving a nonlocal operator, Annals of the University of Craiova Mathematics and Computer Science Series, Volume 50 (2023) no. 2, p. 277 | DOI:10.52846/ami.v50i2.1673
  • João Vitor da Silva; Pablo Ochoa; Analía Silva Fractional elliptic problems with nonlinear gradient sources and measures, Revista Matemática Complutense, Volume 35 (2022) no. 2, p. 485 | DOI:10.1007/s13163-021-00391-1
  • Rongrong Tian; Jinlong Wei; Yanbin Tang The Dirichlet problem for nonlocal elliptic equations, Applicable Analysis, Volume 100 (2021) no. 10, p. 2093 | DOI:10.1080/00036811.2019.1677893
  • Adama Ouédraogo; Dofyniwassouani Alain Houede; Idrissa Ibrango Renormalized solutions for convection-diffusion problems involving a nonlocal operator, Nonlinear Differential Equations and Applications NoDEA, Volume 28 (2021) no. 5 | DOI:10.1007/s00030-021-00713-8
  • Niklas Grossekemper; Petra Wittbold; Aleksandra Zimmermann Entropy Solutions of Doubly Nonlinear Fractional Laplace Equations, Results in Mathematics, Volume 76 (2021) no. 4 | DOI:10.1007/s00025-021-01499-y
  • Ahmed Youssfi; Ghoulam Ould Mohamed Mahmoud On Singular Equations Involving Fractional Laplacian, Acta Mathematica Scientia, Volume 40 (2020) no. 5, p. 1289 | DOI:10.1007/s10473-020-0509-7
  • Nathaël Alibaud; Boris Andreianov; Adama Ouédraogo Nonlocal dissipation measure and L1 kinetic theory for fractional conservation laws, Communications in Partial Differential Equations, Volume 45 (2020) no. 9, p. 1213 | DOI:10.1080/03605302.2020.1768542
  • Chao Zhang; Xia Zhang Renormalized solutions for the fractionalp(x)-Laplacian equation withL1data, Nonlinear Analysis, Volume 190 (2020), p. 111610 | DOI:10.1016/j.na.2019.111610
  • Tomasz Klimsiak On uniqueness and structure of renormalized solutions to integro-differential equations with general measure data, Nonlinear Differential Equations and Applications NoDEA, Volume 27 (2020) no. 5 | DOI:10.1007/s00030-020-00650-y
  • Kaimin Teng; Chao Zhang; Shulin Zhou Renormalized and entropy solutions for the fractional p-Laplacian evolution equations, Journal of Evolution Equations, Volume 19 (2019) no. 2, p. 559 | DOI:10.1007/s00028-019-00486-9
  • Wasan Ajeel Ahmood; Adem Kiliçman, Volume 1739 (2016), p. 020038 | DOI:10.1063/1.4952518
  • Boumediene Abdellaoui; Ahmed Attar; Rachid Bentifour On the fractional p-Laplacian equations with weight and general datum, Advances in Nonlinear Analysis, Volume 8 (2016) no. 1, p. 144 | DOI:10.1515/anona-2016-0072
  • Tomasz Klimsiak Right Markov Processes and Systems of Semilinear Equations with Measure Data, Potential Analysis, Volume 44 (2016) no. 2, p. 373 | DOI:10.1007/s11118-015-9517-y
  • Tuomo Kuusi; Giuseppe Mingione; Yannick Sire Nonlocal Equations with Measure Data, Communications in Mathematical Physics, Volume 337 (2015) no. 3, p. 1317 | DOI:10.1007/s00220-015-2356-2
  • Tommaso Leonori; Ireneo Peral; Ana Primo; Fernando Soria Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 12, p. 6031 | DOI:10.3934/dcds.2015.35.6031
  • Tomasz Klimsiak; Andrzej Rozkosz Renormalized solutions of semilinear equations involving measure data and operator corresponding to Dirichlet form, Nonlinear Differential Equations and Applications NoDEA, Volume 22 (2015) no. 6, p. 1911 | DOI:10.1007/s00030-015-0350-1
  • Tomasz Klimsiak; Andrzej Rozkosz Dirichlet forms and semilinear elliptic equations with measure data, Journal of Functional Analysis, Volume 265 (2013) no. 6, p. 890 | DOI:10.1016/j.jfa.2013.05.028
  • Piotr Gwiazda; Petra Wittbold; Aneta Wróblewska; Aleksandra Zimmermann Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, Journal of Differential Equations, Volume 253 (2012) no. 2, p. 635 | DOI:10.1016/j.jde.2012.03.025
  • Boris Andreianov; Petra Wittbold Convergence of approximate solutions to an elliptic–parabolic equation without the structure condition, Nonlinear Differential Equations and Applications NoDEA, Volume 19 (2012) no. 6, p. 695 | DOI:10.1007/s00030-011-0148-8

Cité par 21 documents. Sources : Crossref

Commentaires - Politique