[Solutions renormalisées de l'équation de Laplace fractionnaire]
Nous introduisons une notion de solution renormalisée pour les problèmes du genre
We define renormalized solutions for the problems of the kind
Accepté le :
Publié le :
Nathaël Alibaud 1, 2 ; Boris Andreianov 1 ; Mostafa Bendahmane 3
@article{CRMATH_2010__348_13-14_759_0, author = {Natha\"el Alibaud and Boris Andreianov and Mostafa Bendahmane}, title = {Renormalized solutions of the fractional {Laplace} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {759--762}, publisher = {Elsevier}, volume = {348}, number = {13-14}, year = {2010}, doi = {10.1016/j.crma.2010.05.006}, language = {en}, }
TY - JOUR AU - Nathaël Alibaud AU - Boris Andreianov AU - Mostafa Bendahmane TI - Renormalized solutions of the fractional Laplace equation JO - Comptes Rendus. Mathématique PY - 2010 SP - 759 EP - 762 VL - 348 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2010.05.006 LA - en ID - CRMATH_2010__348_13-14_759_0 ER -
Nathaël Alibaud; Boris Andreianov; Mostafa Bendahmane. Renormalized solutions of the fractional Laplace equation. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 759-762. doi : 10.1016/j.crma.2010.05.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.05.006/
[1] An
[2] Ph. Bénilan, M.G. Crandall, A. Pazy, Nonlinear evolution equations governed by accretive operators, Preprint
[3] The discontinuous Galerkin method for fractal conservation laws, IMA J. Numer. Anal. (2010) | DOI
[4] Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (4), Volume 28 (1999) no. 4, pp. 741-808
[5] K.H. Karlsen, F. Petitta, S. Ulusoy, A duality approach to the fractional Laplacian with measure data, Preprint, 2010
[6] F. Murat, Équations elliptiques non linéaires avec second membre
- On some elliptic fractional s(·) problems with singular potential and general datum, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 33 (2024) no. 3, p. 681 | DOI:10.5802/afst.1785
- Entropy solutions to the fully nonlocal diffusion equations, Mathematische Nachrichten, Volume 297 (2024) no. 11, p. 4003 | DOI:10.1002/mana.202400130
- Continuous dependence of renormalized solution for convection-diffusion problems involving a nonlocal operator, Annals of the University of Craiova Mathematics and Computer Science Series, Volume 50 (2023) no. 2, p. 277 | DOI:10.52846/ami.v50i2.1673
- Fractional elliptic problems with nonlinear gradient sources and measures, Revista Matemática Complutense, Volume 35 (2022) no. 2, p. 485 | DOI:10.1007/s13163-021-00391-1
- The Dirichlet problem for nonlocal elliptic equations, Applicable Analysis, Volume 100 (2021) no. 10, p. 2093 | DOI:10.1080/00036811.2019.1677893
- Renormalized solutions for convection-diffusion problems involving a nonlocal operator, Nonlinear Differential Equations and Applications NoDEA, Volume 28 (2021) no. 5 | DOI:10.1007/s00030-021-00713-8
- Entropy Solutions of Doubly Nonlinear Fractional Laplace Equations, Results in Mathematics, Volume 76 (2021) no. 4 | DOI:10.1007/s00025-021-01499-y
- On Singular Equations Involving Fractional Laplacian, Acta Mathematica Scientia, Volume 40 (2020) no. 5, p. 1289 | DOI:10.1007/s10473-020-0509-7
- Nonlocal dissipation measure and L1 kinetic theory for fractional conservation laws, Communications in Partial Differential Equations, Volume 45 (2020) no. 9, p. 1213 | DOI:10.1080/03605302.2020.1768542
- Renormalized solutions for the fractionalp(x)-Laplacian equation withL1data, Nonlinear Analysis, Volume 190 (2020), p. 111610 | DOI:10.1016/j.na.2019.111610
- On uniqueness and structure of renormalized solutions to integro-differential equations with general measure data, Nonlinear Differential Equations and Applications NoDEA, Volume 27 (2020) no. 5 | DOI:10.1007/s00030-020-00650-y
- Renormalized and entropy solutions for the fractional p-Laplacian evolution equations, Journal of Evolution Equations, Volume 19 (2019) no. 2, p. 559 | DOI:10.1007/s00028-019-00486-9
- , Volume 1739 (2016), p. 020038 | DOI:10.1063/1.4952518
- On the fractional p-Laplacian equations with weight and general datum, Advances in Nonlinear Analysis, Volume 8 (2016) no. 1, p. 144 | DOI:10.1515/anona-2016-0072
- Right Markov Processes and Systems of Semilinear Equations with Measure Data, Potential Analysis, Volume 44 (2016) no. 2, p. 373 | DOI:10.1007/s11118-015-9517-y
- Nonlocal Equations with Measure Data, Communications in Mathematical Physics, Volume 337 (2015) no. 3, p. 1317 | DOI:10.1007/s00220-015-2356-2
- Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 12, p. 6031 | DOI:10.3934/dcds.2015.35.6031
- Renormalized solutions of semilinear equations involving measure data and operator corresponding to Dirichlet form, Nonlinear Differential Equations and Applications NoDEA, Volume 22 (2015) no. 6, p. 1911 | DOI:10.1007/s00030-015-0350-1
- Dirichlet forms and semilinear elliptic equations with measure data, Journal of Functional Analysis, Volume 265 (2013) no. 6, p. 890 | DOI:10.1016/j.jfa.2013.05.028
- Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, Journal of Differential Equations, Volume 253 (2012) no. 2, p. 635 | DOI:10.1016/j.jde.2012.03.025
- Convergence of approximate solutions to an elliptic–parabolic equation without the structure condition, Nonlinear Differential Equations and Applications NoDEA, Volume 19 (2012) no. 6, p. 695 | DOI:10.1007/s00030-011-0148-8
Cité par 21 documents. Sources : Crossref
Commentaires - Politique