Comptes Rendus
Algebra/Functional Analysis
Trace-positive polynomials and the quartic tracial moment problem
[Polynômes avec une trace positive et le problème quartique des moments traciaux]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 721-726.

Nous présentons l'analogue tracial du résultat classique de Hilbert sur les quartiques positives : un polynôme de degré quatre en deux variables non commutatives ayant une trace positive est une somme de carrés hermitiens et de commutateurs. Ceci est appliqué par dualité à l'étude du problème tronqué des moments traciaux : une suite de nombres réels indexée par des mots de degré quatre en deux variables non commutatives, ayant des valeurs invariantes par permutations circulaires des indices, peut être représentée par des moments traciaux, si la matrice des moments est définie positive.

The tracial analog of Hilbert's classical result on positive binary quartics is presented: a trace-positive bivariate noncommutative polynomial of degree at most four is a sum of hermitian squares and commutators. This is applied via duality to investigate the truncated tracial moment problem: a sequence of real numbers indexed by words of degree four in two noncommuting variables with values invariant under cyclic permutations of the indexes, can be represented with tracial moments of matrices if the corresponding moment matrix is positive definite. Understanding trace-positive polynomials and the tracial moment problem is one of the approaches to Connes' embedding conjecture.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.06.005

Sabine Burgdorf 1, 2 ; Igor Klep 3, 4

1 Institut de recherche mathématique de Rennes, université de Rennes 1, campus de Beaulieu, 35042 Rennes cedex, France
2 Universität Konstanz, Fachbereich Mathematik und Statistik, 78457 Konstanz, Germany
3 Univerza v Mariboru, Fakulteta za naravoslovje in matematiko, Koroška 160, 2000 Maribor, Slovenia
4 Univerza v Ljubljani, Fakulteta za matematiko in fiziko, Jadranska 19, 1000 Ljubljana, Slovenia
@article{CRMATH_2010__348_13-14_721_0,
     author = {Sabine Burgdorf and Igor Klep},
     title = {Trace-positive polynomials and the quartic tracial moment problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {721--726},
     publisher = {Elsevier},
     volume = {348},
     number = {13-14},
     year = {2010},
     doi = {10.1016/j.crma.2010.06.005},
     language = {en},
}
TY  - JOUR
AU  - Sabine Burgdorf
AU  - Igor Klep
TI  - Trace-positive polynomials and the quartic tracial moment problem
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 721
EP  - 726
VL  - 348
IS  - 13-14
PB  - Elsevier
DO  - 10.1016/j.crma.2010.06.005
LA  - en
ID  - CRMATH_2010__348_13-14_721_0
ER  - 
%0 Journal Article
%A Sabine Burgdorf
%A Igor Klep
%T Trace-positive polynomials and the quartic tracial moment problem
%J Comptes Rendus. Mathématique
%D 2010
%P 721-726
%V 348
%N 13-14
%I Elsevier
%R 10.1016/j.crma.2010.06.005
%G en
%F CRMATH_2010__348_13-14_721_0
Sabine Burgdorf; Igor Klep. Trace-positive polynomials and the quartic tracial moment problem. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 721-726. doi : 10.1016/j.crma.2010.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.005/

[1] N.I. Akhiezer The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publishing Co., 1965

[2] C. Bayer; J. Teichmann The proof of Tchakaloff's theorem, Proc. Amer. Math. Soc., Volume 134 (2006) no. 10, pp. 3035-3040

[3] S. Burgdorf; K. Cafuta; I. Klep; J. Povh Semidefinite programming certificates for tracial matrix inequalities http://www.optimization-online.org/DB_HTML/2010/04/2595.html (preprint)

[4] S. Burgdorf; I. Klep The truncated tracial moment problem (J. Operator Theory, in press) | arXiv

[5] M.D. Choi; T.Y. Lam; B. Reznick Extremal positive semidefinite forms, Math. Ann., Volume 231 (1977/78) no. 1, pp. 1-18

[6] A. Connes Classification of injective factors. Cases II1, II, IIIλ, λ1, Ann. Math. (2), Volume 104 (1976) no. 1, pp. 73-115

[7] R.E. Curto; L.A. Fialkow Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc., Volume 119 (1996) no. 568

[8] L. Fialkow; J. Nie Positivity of Riesz functionals and solutions of quadratic and quartic moment problems, J. Funct. Anal., Volume 258 (2010) no. 1, pp. 328-356

[9] J.W. Helton “Positive” non-commutative polynomials are sums of squares, Ann. of Math. (2), Volume 156 (2002) no. 2, pp. 675-694

[10] D. Hilbert Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., Volume 32 (1888), pp. 342-350

[11] I. Klep; M. Schweighofer Connes' embedding conjecture and sums of hermitian squares, Adv. Math., Volume 217 (2008) no. 4, pp. 1816-1837

[12] M.G. Kreĭn; A.A. Nudel'man The Markov Moment Problem and Extremal Problems, Translations of Mathematical Monographs, vol. 50, Amer. Math. Soc., 1977

[13] M. Marshall Positive Polynomials and Sums of Squares, Mathematical Surveys and Monographs, vol. 146, Amer. Math. Soc., 2008

[14] S. McCullough Factorization of operator-valued polynomials in several non-commuting variables, Linear Algebra Appl., Volume 326 (2001) no. 1–3, pp. 193-203

[15] V. Powers; B. Reznick Notes towards a constructive proof of Hilbert's theorem on ternary quartics, Dublin, 1999 (Contemp. Math.), Volume vol. 272, Amer. Math. Soc., Providence, RI (2000), pp. 209-227

[16] V. Powers; B. Reznick; C. Scheiderer; F. Sottile A new approach to Hilbert's theorem on ternary quartics, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 9, pp. 617-620

[17] A. Prestel; C.N. Delzell Positive Polynomials. From Hilbert's 17th Problem to Real Algebra, Springer Monogr. Math., 2001

[18] M. Putinar Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., Volume 42 (1993) no. 3, pp. 969-984

[19] B. Reznick On Hilbert's construction of positive polynomials (preprint) | arXiv

[20] J.A. Shohat; J.D. Tamarkin The Problem of Moments, Amer. Math. Soc. Surveys II, 1943

Cité par Sources :

Commentaires - Politique