[Polynômes avec une trace positive et le problème quartique des moments traciaux]
Nous présentons l'analogue tracial du résultat classique de Hilbert sur les quartiques positives : un polynôme de degré quatre en deux variables non commutatives ayant une trace positive est une somme de carrés hermitiens et de commutateurs. Ceci est appliqué par dualité à l'étude du problème tronqué des moments traciaux : une suite de nombres réels indexée par des mots de degré quatre en deux variables non commutatives, ayant des valeurs invariantes par permutations circulaires des indices, peut être représentée par des moments traciaux, si la matrice des moments est définie positive.
The tracial analog of Hilbert's classical result on positive binary quartics is presented: a trace-positive bivariate noncommutative polynomial of degree at most four is a sum of hermitian squares and commutators. This is applied via duality to investigate the truncated tracial moment problem: a sequence of real numbers indexed by words of degree four in two noncommuting variables with values invariant under cyclic permutations of the indexes, can be represented with tracial moments of matrices if the corresponding moment matrix is positive definite. Understanding trace-positive polynomials and the tracial moment problem is one of the approaches to Connes' embedding conjecture.
Accepté le :
Publié le :
Sabine Burgdorf 1, 2 ; Igor Klep 3, 4
@article{CRMATH_2010__348_13-14_721_0, author = {Sabine Burgdorf and Igor Klep}, title = {Trace-positive polynomials and the quartic tracial moment problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {721--726}, publisher = {Elsevier}, volume = {348}, number = {13-14}, year = {2010}, doi = {10.1016/j.crma.2010.06.005}, language = {en}, }
Sabine Burgdorf; Igor Klep. Trace-positive polynomials and the quartic tracial moment problem. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 721-726. doi : 10.1016/j.crma.2010.06.005. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.005/
[1] The Classical Moment Problem and Some Related Questions in Analysis, Hafner Publishing Co., 1965
[2] The proof of Tchakaloff's theorem, Proc. Amer. Math. Soc., Volume 134 (2006) no. 10, pp. 3035-3040
[3] Semidefinite programming certificates for tracial matrix inequalities http://www.optimization-online.org/DB_HTML/2010/04/2595.html (preprint)
[4] The truncated tracial moment problem (J. Operator Theory, in press) | arXiv
[5] Extremal positive semidefinite forms, Math. Ann., Volume 231 (1977/78) no. 1, pp. 1-18
[6] Classification of injective factors. Cases , , , , Ann. Math. (2), Volume 104 (1976) no. 1, pp. 73-115
[7] Solution of the truncated complex moment problem for flat data, Mem. Amer. Math. Soc., Volume 119 (1996) no. 568
[8] Positivity of Riesz functionals and solutions of quadratic and quartic moment problems, J. Funct. Anal., Volume 258 (2010) no. 1, pp. 328-356
[9] “Positive” non-commutative polynomials are sums of squares, Ann. of Math. (2), Volume 156 (2002) no. 2, pp. 675-694
[10] Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., Volume 32 (1888), pp. 342-350
[11] Connes' embedding conjecture and sums of hermitian squares, Adv. Math., Volume 217 (2008) no. 4, pp. 1816-1837
[12] The Markov Moment Problem and Extremal Problems, Translations of Mathematical Monographs, vol. 50, Amer. Math. Soc., 1977
[13] Positive Polynomials and Sums of Squares, Mathematical Surveys and Monographs, vol. 146, Amer. Math. Soc., 2008
[14] Factorization of operator-valued polynomials in several non-commuting variables, Linear Algebra Appl., Volume 326 (2001) no. 1–3, pp. 193-203
[15] Notes towards a constructive proof of Hilbert's theorem on ternary quartics, Dublin, 1999 (Contemp. Math.), Volume vol. 272, Amer. Math. Soc., Providence, RI (2000), pp. 209-227
[16] A new approach to Hilbert's theorem on ternary quartics, C. R. Acad. Sci. Paris, Ser. I, Volume 339 (2004) no. 9, pp. 617-620
[17] Positive Polynomials. From Hilbert's 17th Problem to Real Algebra, Springer Monogr. Math., 2001
[18] Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., Volume 42 (1993) no. 3, pp. 969-984
[19] On Hilbert's construction of positive polynomials (preprint) | arXiv
[20] The Problem of Moments, Amer. Math. Soc. Surveys II, 1943
Cité par Sources :
Commentaires - Politique