[Équivalence entre deux méthodes d'éléments finis pour le problème des courants de Foucault]
Le but de cette Note est de démontrer que deux méthodes d'éléments finis pour la résolution du problème des courants de Foucault, en principe différentes, sont complètement équivalentes. La première concerne une formulation qui a comme inconnues principales le champ magnétique dans le conducteur et le potentiel scalaire magnétique dans le diélectrique. La seconde résout une formulation qui inclut le champ magnétique dans tout le domaine et un multiplicateur de Lagrange dans le diélectrique. On démontre aussi que celle-ci est équivalente à une troisième formulation avec deux multiplicateurs de Lagrange, qui conduit à un système linéaire bien posé.
The goal of this Note is to prove that two, in principle different, well-known finite element approximations of the eddy current model are equivalent. The first one concerns a formulation involving the magnetic field in the conductor and the magnetic scalar potential in the dielectric. The second one solves another formulation of the same problem involving the magnetic field in both, the conductor and the dielectric, and a Lagrange multiplier in the dielectric. The latter is also shown to be equivalent to a third formulation involving two Lagrange multipliers, which leads to a well posed linear system.
Accepté le :
Publié le :
Alfredo Bermúdez 1 ; Bibiana López-Rodríguez 2 ; Rodolfo Rodríguez 2 ; Pilar Salgado 1
@article{CRMATH_2010__348_13-14_769_0, author = {Alfredo Berm\'udez and Bibiana L\'opez-Rodr{\'\i}guez and Rodolfo Rodr{\'\i}guez and Pilar Salgado}, title = {Equivalence between two finite element methods for the eddy current problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {769--774}, publisher = {Elsevier}, volume = {348}, number = {13-14}, year = {2010}, doi = {10.1016/j.crma.2010.06.012}, language = {en}, }
TY - JOUR AU - Alfredo Bermúdez AU - Bibiana López-Rodríguez AU - Rodolfo Rodríguez AU - Pilar Salgado TI - Equivalence between two finite element methods for the eddy current problem JO - Comptes Rendus. Mathématique PY - 2010 SP - 769 EP - 774 VL - 348 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2010.06.012 LA - en ID - CRMATH_2010__348_13-14_769_0 ER -
%0 Journal Article %A Alfredo Bermúdez %A Bibiana López-Rodríguez %A Rodolfo Rodríguez %A Pilar Salgado %T Equivalence between two finite element methods for the eddy current problem %J Comptes Rendus. Mathématique %D 2010 %P 769-774 %V 348 %N 13-14 %I Elsevier %R 10.1016/j.crma.2010.06.012 %G en %F CRMATH_2010__348_13-14_769_0
Alfredo Bermúdez; Bibiana López-Rodríguez; Rodolfo Rodríguez; Pilar Salgado. Equivalence between two finite element methods for the eddy current problem. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 769-774. doi : 10.1016/j.crma.2010.06.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.012/
[1] Mixed finite element approximation of eddy current problems, IMA J. Numer. Anal., Volume 24 (2004), pp. 255-271
[2] Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., Volume 21 (1998), pp. 823-864
[3] A finite element method with Lagrange multipliers for low-frequency harmonic Maxwell equations, SIAM J. Numer. Anal., Volume 40 (2002), pp. 1823-1849
[4] Numerical solution of eddy current problems in bounded domains using realistic boundary conditions, Comput. Methods Appl. Mech. Engrg., Volume 194 (2005), pp. 411-426
[5] Most general “non-local” boundary conditions for the Maxwell equation in a bounded region, COMPEL, Volume 19 (2000), pp. 3239-3245
[6] A mixed method for approximating Maxwell's equations, SIAM J. Numer. Anal., Volume 28 (1991), pp. 1610-1634
[7] Finite Element Methods for Maxwell's Equations, Oxford University Press, New York, 2003
Cité par Sources :
☆ Work partially supported by Ministerio de Ciencia e Innovación of Spain under grant number MTM2008-02483.
Commentaires - Politique