[Théorèmes de type Liouville pour quelques équations paraboliques singulières dégénérées]
En utilisant des résultats récents sur l'inégalité de Harnack pour les équations type p-laplacien, on établit des théorèmes de type Liouville pour les solutions de ces équations, dans le cas dégénéré , ainsi bien que dans le cas singulier .
Relying on recent results on Harnack inequalities for equations of p-Laplacian type, we prove Liouville-type estimates for solutions to these equations, both in the degenerate (), and in the singular () range.
Accepté le :
Publié le :
Emmanuele DiBenedetto 1 ; Ugo Gianazza 2 ; Vincenzo Vespri 3
@article{CRMATH_2010__348_15-16_873_0, author = {Emmanuele DiBenedetto and Ugo Gianazza and Vincenzo Vespri}, title = {Liouville-type theorems for certain degenerate and singular parabolic equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {873--877}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.06.019}, language = {en}, }
TY - JOUR AU - Emmanuele DiBenedetto AU - Ugo Gianazza AU - Vincenzo Vespri TI - Liouville-type theorems for certain degenerate and singular parabolic equations JO - Comptes Rendus. Mathématique PY - 2010 SP - 873 EP - 877 VL - 348 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2010.06.019 LA - en ID - CRMATH_2010__348_15-16_873_0 ER -
%0 Journal Article %A Emmanuele DiBenedetto %A Ugo Gianazza %A Vincenzo Vespri %T Liouville-type theorems for certain degenerate and singular parabolic equations %J Comptes Rendus. Mathématique %D 2010 %P 873-877 %V 348 %N 15-16 %I Elsevier %R 10.1016/j.crma.2010.06.019 %G en %F CRMATH_2010__348_15-16_873_0
Emmanuele DiBenedetto; Ugo Gianazza; Vincenzo Vespri. Liouville-type theorems for certain degenerate and singular parabolic equations. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 873-877. doi : 10.1016/j.crma.2010.06.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.019/
[1] Harnack estimates for quasi-linear degenerate parabolic differential equation, Acta Math., Volume 200 (2008), pp. 181-209
[2] Alternative forms of the Harnack inequality for non-negative solutions to certain degenerate and singular parabolic equations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. (9) Rend. Lincei Mat. Appl., Volume 20 (2009), pp. 369-377
[3] Forward, backward and elliptic Harnack inequalities for non-negative solutions to certain singular parabolic partial differential equations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume IX (2010), pp. 385-422
[4] Liouville theorems for the solution of second order linear parabolic equations with discontinuous coefficients, Math. Zametki, Volume 5 (1969), pp. 599-606
[5] Phragmén–Lindelöf type theorems and Liouville theorems for a linear parabolic equation, Math. Zametki, Volume 37 (1985), pp. 119-124
[6] Liouville theorems in halfspaces for parabolic hypoelliptic equations, Ric. Mat., Volume 55 (2006), pp. 267-282
[7] A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math., Volume 17 (1964), pp. 101-134
Cité par Sources :
Commentaires - Politique