[Accélération de Aitken du préconditionnement Schwarz Additif Restreint utilisant des approximations grossières de l'interface]
Une amélioration du préconditionneur Schwarz Additif Restreint (RAS) fondée sur l'accélération de la convergence purement linéaire de la méthode de Schwarz par la méthode de Aitken, est proposée. Sa performance est comparée au préconditionneur RAS sur le problème de Helmholtz bidimensionnel.
An enhancement of the restricted Additive Schwarz (RAS) preconditioning, based on the Aitken's acceleration of the convergence of the Schwarz method, is proposed. Its numerical performance is compared with the RAS preconditioning on the two dimensional Helmholtz problem.
Accepté le :
Publié le :
Thomas Dufaud 1 ; Damien Tromeur-Dervout 1
@article{CRMATH_2010__348_13-14_821_0, author = {Thomas Dufaud and Damien Tromeur-Dervout}, title = {Aitken's acceleration of the {Restricted} {Additive} {Schwarz} preconditioning using coarse approximations on the interface}, journal = {Comptes Rendus. Math\'ematique}, pages = {821--824}, publisher = {Elsevier}, volume = {348}, number = {13-14}, year = {2010}, doi = {10.1016/j.crma.2010.06.021}, language = {en}, }
TY - JOUR AU - Thomas Dufaud AU - Damien Tromeur-Dervout TI - Aitken's acceleration of the Restricted Additive Schwarz preconditioning using coarse approximations on the interface JO - Comptes Rendus. Mathématique PY - 2010 SP - 821 EP - 824 VL - 348 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2010.06.021 LA - en ID - CRMATH_2010__348_13-14_821_0 ER -
%0 Journal Article %A Thomas Dufaud %A Damien Tromeur-Dervout %T Aitken's acceleration of the Restricted Additive Schwarz preconditioning using coarse approximations on the interface %J Comptes Rendus. Mathématique %D 2010 %P 821-824 %V 348 %N 13-14 %I Elsevier %R 10.1016/j.crma.2010.06.021 %G en %F CRMATH_2010__348_13-14_821_0
Thomas Dufaud; Damien Tromeur-Dervout. Aitken's acceleration of the Restricted Additive Schwarz preconditioning using coarse approximations on the interface. Comptes Rendus. Mathématique, Volume 348 (2010) no. 13-14, pp. 821-824. doi : 10.1016/j.crma.2010.06.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.06.021/
[1] A Restricted Additive Schwarz preconditioner for general sparse linear systems, SIAM J. Sci. Comput., Volume 21 (1999) no. 2, pp. 792-797
[2] Optimized multiplicative, additive, and Restricted Additive Schwarz preconditioning, SIAM J. Sci. Comput., Volume 29 (2007) no. 6, pp. 2402-2425
[3] Why Restricted Additive Schwarz converges faster than Additive Schwarz, BIT Numerical Mathematics, Volume 43 (2003) no. 5, pp. 945-959
[4] Variational iterative methods for nonsymmetric systems of linear equations, SIAM J. Numer. Anal., Volume 20 (1983), pp. 345-357
[5] Analysis of patch substructuring methods, Int. J. Appl. Math. Comput. Sci., Volume 17 (2007) no. 3, pp. 395-402
[6] On some Aitken-like acceleration of the Schwarz method, Int. J. Numerical Methods in Fluids, Volume 40 (2002) no. 12, pp. 1493-1513
[7] SchurRAS: A restricted version of the overlapping Schur complement preconditioner, SIAM J. Sci. Comput., Volume 27 (2006) no. 5, pp. 1787-1801
[8] Domain Decomposition Methods for Partial Differential Equations, Numerical Mathematics and Scientific Computation, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1999
[9] Domain Decomposition Methods Algorithms and Theory, Springer Series in Computational Mathematics, vol. 34, Springer-Verlag, Berlin, 2005
[10] Meshfree Adaptive Aitken–Schwarz domain decomposition with application to Darcy flow (B.H.V. Topping; P. Ivnyi, eds.), Parallel, Distributed and Grid Computing for Engineering, Saxe-Coburg Publications, Stirlingshire, UK, 2009, pp. 217-250 (Chapter 11, doi:10.4203/csets.21.11)
Cité par Sources :
Commentaires - Politique