Comptes Rendus
Mathematical Analysis
Hyperbolicity preservers and majorization
[Préservateurs d'hyperbolicité et majorisation]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 843-846.

L'ordre de majorisation de Rn induit un ordre partiel naturel sur l'espace des polynômes hyperboliques univariés de degré n. Nous caractérisons les opérateurs linéaires sur ces polynômes préservant l'ordre donné et montrons que seule la préservation de l'hyperbolicité suffit (modulo des contraintes évidentes sur le degré).

The majorization order on Rn induces a natural partial ordering on the space of univariate hyperbolic polynomials of degree n. We characterize all linear operators on polynomials that preserve majorization, and show that it is sufficient (modulo obvious degree constraints) to preserve hyperbolicity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.07.006

Julius Borcea 1 ; Petter Brändén 1

1 Department of Mathematics, Stockholm University, 10691 Sweden
@article{CRMATH_2010__348_15-16_843_0,
     author = {Julius Borcea and Petter Br\"and\'en},
     title = {Hyperbolicity preservers and majorization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {843--846},
     publisher = {Elsevier},
     volume = {348},
     number = {15-16},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.006},
     language = {en},
}
TY  - JOUR
AU  - Julius Borcea
AU  - Petter Brändén
TI  - Hyperbolicity preservers and majorization
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 843
EP  - 846
VL  - 348
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2010.07.006
LA  - en
ID  - CRMATH_2010__348_15-16_843_0
ER  - 
%0 Journal Article
%A Julius Borcea
%A Petter Brändén
%T Hyperbolicity preservers and majorization
%J Comptes Rendus. Mathématique
%D 2010
%P 843-846
%V 348
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2010.07.006
%G en
%F CRMATH_2010__348_15-16_843_0
Julius Borcea; Petter Brändén. Hyperbolicity preservers and majorization. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 843-846. doi : 10.1016/j.crma.2010.07.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.006/

[1] J. Borcea Spectral order and isotonic differential operators of Laguerre–Pólya type, Ark. Mat., Volume 44 (2006), pp. 211-240

[2] J. Borcea Convexity properties of twisted root maps, Rocky Mountain J. Math., Volume 38 (2008), pp. 809-834

[3] J. Borcea; P. Brändén Pólya–Schur master theorems for circular domains and their boundaries, Ann. of Math. (2), Volume 170 (2009), pp. 465-492

[4] J. Borcea; B. Shapiro Hyperbolic polynomials and spectral order, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 693-698

[5] P. Brändén Polynomials with the half-plane property and matroid theory, Adv. Math., Volume 216 (2007), pp. 302-320

[6] A. Church, R. Pereira, D. Kribs, Majorization and multiplier sequences, Preprint.

[7] T. Craven; G. Csordas Multiplier sequences for fields, Illinois J. Math., Volume 21 (1977), pp. 801-817

[8] K. Fan On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Natl. Acad. Sci. USA, Volume 35 (1949), pp. 652-655

[9] J. Helton; V. Vinnikov Linear matrix inequality representation of sets, Comm. Pure Appl. Math., Volume 60 (2007), pp. 654-674

[10] A. Lewis; P. Parrilo; M. Ramana The Lax conjecture is true, Proc. Amer. Math. Soc., Volume 133 (2005), pp. 2495-2499

[11] A.W. Marshall; I. Olkin Inequalities: Theory of Majorization and Its Applications, Math. Sci. Engrg., vol. 143, Academic Press, New York, 1979

[12] R. Pereira Matrix-theoretical derivations of some results of Borcea–Shapiro on hyperbolic polynomials, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 651-653

Cité par Sources :

Commentaires - Politique