[Préservateurs d'hyperbolicité et majorisation]
L'ordre de majorisation de
The majorization order on
Accepté le :
Publié le :
Julius Borcea 1 ; Petter Brändén 1
@article{CRMATH_2010__348_15-16_843_0, author = {Julius Borcea and Petter Br\"and\'en}, title = {Hyperbolicity preservers and majorization}, journal = {Comptes Rendus. Math\'ematique}, pages = {843--846}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.07.006}, language = {en}, }
Julius Borcea; Petter Brändén. Hyperbolicity preservers and majorization. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 843-846. doi : 10.1016/j.crma.2010.07.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.006/
[1] Spectral order and isotonic differential operators of Laguerre–Pólya type, Ark. Mat., Volume 44 (2006), pp. 211-240
[2] Convexity properties of twisted root maps, Rocky Mountain J. Math., Volume 38 (2008), pp. 809-834
[3] Pólya–Schur master theorems for circular domains and their boundaries, Ann. of Math. (2), Volume 170 (2009), pp. 465-492
[4] Hyperbolic polynomials and spectral order, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 693-698
[5] Polynomials with the half-plane property and matroid theory, Adv. Math., Volume 216 (2007), pp. 302-320
[6] A. Church, R. Pereira, D. Kribs, Majorization and multiplier sequences, Preprint.
[7] Multiplier sequences for fields, Illinois J. Math., Volume 21 (1977), pp. 801-817
[8] On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Natl. Acad. Sci. USA, Volume 35 (1949), pp. 652-655
[9] Linear matrix inequality representation of sets, Comm. Pure Appl. Math., Volume 60 (2007), pp. 654-674
[10] The Lax conjecture is true, Proc. Amer. Math. Soc., Volume 133 (2005), pp. 2495-2499
[11] Inequalities: Theory of Majorization and Its Applications, Math. Sci. Engrg., vol. 143, Academic Press, New York, 1979
[12] Matrix-theoretical derivations of some results of Borcea–Shapiro on hyperbolic polynomials, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 651-653
- Positively hyperbolic varieties, tropicalization, and positroids, Advances in Mathematics, Volume 383 (2021), p. 35 (Id/No 107677) | DOI:10.1016/j.aim.2021.107677 | Zbl:1471.14130
- Principal Submatrices, Restricted Invertibility, and a Quantitative Gauss–Lucas Theorem, International Mathematics Research Notices, Volume 2020 (2020) no. 15, p. 4809 | DOI:10.1093/imrn/rny163
Cité par 2 documents. Sources : Crossref, zbMATH
Commentaires - Politique