[Préservateurs d'hyperbolicité et majorisation]
L'ordre de majorisation de induit un ordre partiel naturel sur l'espace des polynômes hyperboliques univariés de degré n. Nous caractérisons les opérateurs linéaires sur ces polynômes préservant l'ordre donné et montrons que seule la préservation de l'hyperbolicité suffit (modulo des contraintes évidentes sur le degré).
The majorization order on induces a natural partial ordering on the space of univariate hyperbolic polynomials of degree n. We characterize all linear operators on polynomials that preserve majorization, and show that it is sufficient (modulo obvious degree constraints) to preserve hyperbolicity.
Accepté le :
Publié le :
Julius Borcea 1 ; Petter Brändén 1
@article{CRMATH_2010__348_15-16_843_0, author = {Julius Borcea and Petter Br\"and\'en}, title = {Hyperbolicity preservers and majorization}, journal = {Comptes Rendus. Math\'ematique}, pages = {843--846}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.07.006}, language = {en}, }
Julius Borcea; Petter Brändén. Hyperbolicity preservers and majorization. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 843-846. doi : 10.1016/j.crma.2010.07.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.006/
[1] Spectral order and isotonic differential operators of Laguerre–Pólya type, Ark. Mat., Volume 44 (2006), pp. 211-240
[2] Convexity properties of twisted root maps, Rocky Mountain J. Math., Volume 38 (2008), pp. 809-834
[3] Pólya–Schur master theorems for circular domains and their boundaries, Ann. of Math. (2), Volume 170 (2009), pp. 465-492
[4] Hyperbolic polynomials and spectral order, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 693-698
[5] Polynomials with the half-plane property and matroid theory, Adv. Math., Volume 216 (2007), pp. 302-320
[6] A. Church, R. Pereira, D. Kribs, Majorization and multiplier sequences, Preprint.
[7] Multiplier sequences for fields, Illinois J. Math., Volume 21 (1977), pp. 801-817
[8] On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Natl. Acad. Sci. USA, Volume 35 (1949), pp. 652-655
[9] Linear matrix inequality representation of sets, Comm. Pure Appl. Math., Volume 60 (2007), pp. 654-674
[10] The Lax conjecture is true, Proc. Amer. Math. Soc., Volume 133 (2005), pp. 2495-2499
[11] Inequalities: Theory of Majorization and Its Applications, Math. Sci. Engrg., vol. 143, Academic Press, New York, 1979
[12] Matrix-theoretical derivations of some results of Borcea–Shapiro on hyperbolic polynomials, C. R. Acad. Sci. Paris, Ser. I, Volume 341 (2005), pp. 651-653
Cité par Sources :
Commentaires - Politique