[La dérivation matricielle de certaines résultats de Borcea–Shapiro sur les polynômes hyperboliques]
On utilise l'analyse matricielle pour obtenir des démonstrations simples de deux résultats de Borcea–Shapiro sur la relation de majoration entre certains polynômes hyperboliques. On obtient aussi un résultat apparenté sur la majoration des zéros de polynômes complexes.
We use matrix analysis to give simple proofs of two theorems of Borcea–Shapiro which yield majorization relations between certain hyperbolic polynomials. We also prove a conjecture of Borcea involving majorization and the zeros of polynomials.
Accepté le :
Publié le :
Rajesh Pereira 1
@article{CRMATH_2005__341_11_651_0, author = {Rajesh Pereira}, title = {Matrix-theoretical derivations of some results of {Borcea{\textendash}Shapiro} on hyperbolic polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {651--653}, publisher = {Elsevier}, volume = {341}, number = {11}, year = {2005}, doi = {10.1016/j.crma.2005.10.002}, language = {en}, }
Rajesh Pereira. Matrix-theoretical derivations of some results of Borcea–Shapiro on hyperbolic polynomials. Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 651-653. doi : 10.1016/j.crma.2005.10.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.002/
[1] Singular values of a matrix, Amer. Math. Monthly, Volume 65 (1958), pp. 742-748
[2] Generating polynomials all of whose roots are real, Math. Mag., Volume 64 (1991), pp. 263-270
[3] arXiv
(Convexity of twisted root maps, Rocky Mountain Math. J., in press. Available at) |[4] Hyperbolic polynomials and spectral order, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 693-698
[5] On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Nat. Acad. Sci. USA, Volume 35 (1949), pp. 652-655
[6] Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979
[7] Differentiators and the geometry of polynomials, J. Math. Anal. Appl., Volume 285 (2003), pp. 336-348
Cité par Sources :
Commentaires - Politique