Comptes Rendus
Mathematical Analysis
Matrix-theoretical derivations of some results of Borcea–Shapiro on hyperbolic polynomials
[La dérivation matricielle de certaines résultats de Borcea–Shapiro sur les polynômes hyperboliques]
Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 651-653.

On utilise l'analyse matricielle pour obtenir des démonstrations simples de deux résultats de Borcea–Shapiro sur la relation de majoration entre certains polynômes hyperboliques. On obtient aussi un résultat apparenté sur la majoration des zéros de polynômes complexes.

We use matrix analysis to give simple proofs of two theorems of Borcea–Shapiro which yield majorization relations between certain hyperbolic polynomials. We also prove a conjecture of Borcea involving majorization and the zeros of polynomials.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2005.10.002

Rajesh Pereira 1

1 Department of Mathematics and Statistics, University of Saskatchewan, S7N 5E6 Saskatoon SK, Canada
@article{CRMATH_2005__341_11_651_0,
     author = {Rajesh Pereira},
     title = {Matrix-theoretical derivations of some results of {Borcea{\textendash}Shapiro} on hyperbolic polynomials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {651--653},
     publisher = {Elsevier},
     volume = {341},
     number = {11},
     year = {2005},
     doi = {10.1016/j.crma.2005.10.002},
     language = {en},
}
TY  - JOUR
AU  - Rajesh Pereira
TI  - Matrix-theoretical derivations of some results of Borcea–Shapiro on hyperbolic polynomials
JO  - Comptes Rendus. Mathématique
PY  - 2005
SP  - 651
EP  - 653
VL  - 341
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crma.2005.10.002
LA  - en
ID  - CRMATH_2005__341_11_651_0
ER  - 
%0 Journal Article
%A Rajesh Pereira
%T Matrix-theoretical derivations of some results of Borcea–Shapiro on hyperbolic polynomials
%J Comptes Rendus. Mathématique
%D 2005
%P 651-653
%V 341
%N 11
%I Elsevier
%R 10.1016/j.crma.2005.10.002
%G en
%F CRMATH_2005__341_11_651_0
Rajesh Pereira. Matrix-theoretical derivations of some results of Borcea–Shapiro on hyperbolic polynomials. Comptes Rendus. Mathématique, Volume 341 (2005) no. 11, pp. 651-653. doi : 10.1016/j.crma.2005.10.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2005.10.002/

[1] A.R. Amir-Moéz; A. Horn Singular values of a matrix, Amer. Math. Monthly, Volume 65 (1958), pp. 742-748

[2] G. Bilodeau Generating polynomials all of whose roots are real, Math. Mag., Volume 64 (1991), pp. 263-270

[3] J. Borcea (Convexity of twisted root maps, Rocky Mountain Math. J., in press. Available at) | arXiv

[4] J. Borcea; B. Shapiro Hyperbolic polynomials and spectral order, C. R. Acad. Sci. Paris, Ser. I, Volume 337 (2003), pp. 693-698

[5] K. Fan On a theorem of Weyl concerning eigenvalues of linear transformations I, Proc. Nat. Acad. Sci. USA, Volume 35 (1949), pp. 652-655

[6] A.W. Marshall; I. Olkin Inequalities: Theory of Majorization and its Applications, Academic Press, New York, 1979

[7] R. Pereira Differentiators and the geometry of polynomials, J. Math. Anal. Appl., Volume 285 (2003), pp. 336-348

Cité par Sources :

Commentaires - Politique