This Note is concerned with the asymptotic behavior of the minimal KPP speed of propagation for reaction–advection–diffusion equations with a large drift Mq (where q is the advection). We first give the limit of the speed as in any space dimension N. Then, we give the necessary and sufficient condition that the advection field should satisfy so that the speed acts as as .
Dans cette Note on étudie le comportement asymptotique de la vitesse minimale de propagation des fronts progressifs pulsatoires satisfaisant une équation de réaction–advection–diffusion dans le cas d'une grande advection Mq (où q est l'advection). On donne la valeur limite de la vitesse lorsque dans un espace de dimension N quelconque. Pour le cas on donne une condition nécessaire et suffisante pour que la vitesse se comporte comme pour .
Accepted:
Published online:
Mohammad El Smaily 1; Stéphane Kirsch 1
@article{CRMATH_2010__348_15-16_857_0, author = {Mohammad El Smaily and St\'ephane Kirsch}, title = {Asymptotics of the {KPP} minimal speed within large drift}, journal = {Comptes Rendus. Math\'ematique}, pages = {857--861}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.07.007}, language = {en}, }
Mohammad El Smaily; Stéphane Kirsch. Asymptotics of the KPP minimal speed within large drift. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 857-861. doi : 10.1016/j.crma.2010.07.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.007/
[1] Front propagation in periodic excitable media, Commun. Pure Appl. Math., Volume 55 (2002), pp. 949-1032
[2] The principal eigenvalue of elliptic operators with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys., Volume 253 (2005), pp. 451-480
[3] The speed of propagation for KPP type problems. I – Periodic framework, J. Eur. Math. Soc., Volume 7 (2005), pp. 173-213
[4] Pulsating travelling fronts: Asymptotics and homogenization regimes, European J. Appl. Math., Volume 19 (2008), pp. 393-434
[5] Homogenization and influence of fragmentation in a biological invasion model, Discrete Contin. Dyn. Syst. A, Volume 25 (2009), pp. 321-342
[6] Min–Max formulae for the speeds of pulsating travelling fronts in periodic excitable media, Ann. Mat. Pura Appl., Volume 189 (2010), pp. 47-66
[7] The speed of propagation for KPP reaction–diffusion equations within large drift, 2009 (preprint) | arXiv
[8] Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Bull. Univ. d'Etat de Moscou (Bjul. Moskowskogo Gos. Univ.) Sér. A, Volume 1 (1937), pp. 1-26
[9] Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows, Arch. Ration. Mech. Anal., Volume 195 (2010), pp. 441-453
Cited by Sources:
Comments - Policy