Comptes Rendus
Partial Differential Equations
Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff
[Existence globale pour l'équation de Boltzmann sans troncature]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 867-871.

Nous présentons le premier résultat d'existence globale pour l'équation de Boltzmann sans troncature angulaire, dans le cadre des espaces de Sobolev à poids, dans un cadre proche de l'équilibre, et pour des molécules maxwelliennes. Ces solutions devienent régulières pour tout temps positif. Un point important de la preuve consiste en l'introduction d'une nouvelle norme adaptée à la singularité et aux propriétés de dissipation de l'opérateur de collision linéarisé.

We present the first global well-posedness result for the Boltzmann equation without angular cutoff in the framework of weighted Sobolev spaces, in a close to equilibrium framework, and for Maxwellian molecules. These solutions become smooth for any positive time. An important ingredient of the proof rests on the introduction of a new norm, encoding both the singularity and the dissipation properties of the linearized collision operator.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.07.008

Radjesvarane Alexandre 1 ; Y. Morimoto 2 ; S. Ukai 3 ; Chao-Jiang Xu 4 ; T. Yang 5

1 École navale, IRENAV, BRCM Brest, cc 600, 29240 Brest, France
2 Kyoto University, Japan
3 17-26 Iwasaki-cho, Hodogaya-ku, Yokohama, Japan
4 Université de Rouen, France and Wuhan University, China
5 City University, Hong Kong
@article{CRMATH_2010__348_15-16_867_0,
     author = {Radjesvarane Alexandre and Y. Morimoto and S. Ukai and Chao-Jiang Xu and T. Yang},
     title = {Global well-posedness theory for the spatially inhomogeneous {Boltzmann} equation without angular cutoff},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {867--871},
     publisher = {Elsevier},
     volume = {348},
     number = {15-16},
     year = {2010},
     doi = {10.1016/j.crma.2010.07.008},
     language = {en},
}
TY  - JOUR
AU  - Radjesvarane Alexandre
AU  - Y. Morimoto
AU  - S. Ukai
AU  - Chao-Jiang Xu
AU  - T. Yang
TI  - Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 867
EP  - 871
VL  - 348
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2010.07.008
LA  - en
ID  - CRMATH_2010__348_15-16_867_0
ER  - 
%0 Journal Article
%A Radjesvarane Alexandre
%A Y. Morimoto
%A S. Ukai
%A Chao-Jiang Xu
%A T. Yang
%T Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff
%J Comptes Rendus. Mathématique
%D 2010
%P 867-871
%V 348
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2010.07.008
%G en
%F CRMATH_2010__348_15-16_867_0
Radjesvarane Alexandre; Y. Morimoto; S. Ukai; Chao-Jiang Xu; T. Yang. Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 867-871. doi : 10.1016/j.crma.2010.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.008/

[1] R. Alexandre; L. Desvillettes; C. Villani; B. Wennberg Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., Volume 152 (2000), pp. 327-355

[2] R. Alexandre; Y. Morimoto; S. Ukai; C.-J. Xu; T. Yang Uncertainty principle and kinetic equations, J. Funct. Anal., Volume 255 (2008), pp. 2013-2066

[3] R. Alexandre; Y. Morimoto; S. Ukai; C.-J. Xu; T. Yang Regularity of solutions for the Boltzmann equation without angular cutoff, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 747-752

[4] R. Alexandre; Y. Morimoto; S. Ukai; C.-J. Xu; T. Yang Global existence and full regularity of the Boltzmann equation without angular cutoff, Part I: Maxwellian case and small singularity (Preprint HAL) | HAL

[5] Y. Guo The Boltzmann equation in the whole space, Indiana Univ. Math. J., Volume 53 (2004) no. 4, pp. 1081-1094

[6] C. Mouhot Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, Volume 31 (2006), pp. 1321-1348

Cité par Sources :

Commentaires - Politique