[Existence globale pour l'équation de Boltzmann sans troncature]
Nous présentons le premier résultat d'existence globale pour l'équation de Boltzmann sans troncature angulaire, dans le cadre des espaces de Sobolev à poids, dans un cadre proche de l'équilibre, et pour des molécules maxwelliennes. Ces solutions devienent régulières pour tout temps positif. Un point important de la preuve consiste en l'introduction d'une nouvelle norme adaptée à la singularité et aux propriétés de dissipation de l'opérateur de collision linéarisé.
We present the first global well-posedness result for the Boltzmann equation without angular cutoff in the framework of weighted Sobolev spaces, in a close to equilibrium framework, and for Maxwellian molecules. These solutions become smooth for any positive time. An important ingredient of the proof rests on the introduction of a new norm, encoding both the singularity and the dissipation properties of the linearized collision operator.
Accepté le :
Publié le :
Radjesvarane Alexandre 1 ; Y. Morimoto 2 ; S. Ukai 3 ; Chao-Jiang Xu 4 ; T. Yang 5
@article{CRMATH_2010__348_15-16_867_0, author = {Radjesvarane Alexandre and Y. Morimoto and S. Ukai and Chao-Jiang Xu and T. Yang}, title = {Global well-posedness theory for the spatially inhomogeneous {Boltzmann} equation without angular cutoff}, journal = {Comptes Rendus. Math\'ematique}, pages = {867--871}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.07.008}, language = {en}, }
TY - JOUR AU - Radjesvarane Alexandre AU - Y. Morimoto AU - S. Ukai AU - Chao-Jiang Xu AU - T. Yang TI - Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff JO - Comptes Rendus. Mathématique PY - 2010 SP - 867 EP - 871 VL - 348 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2010.07.008 LA - en ID - CRMATH_2010__348_15-16_867_0 ER -
%0 Journal Article %A Radjesvarane Alexandre %A Y. Morimoto %A S. Ukai %A Chao-Jiang Xu %A T. Yang %T Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff %J Comptes Rendus. Mathématique %D 2010 %P 867-871 %V 348 %N 15-16 %I Elsevier %R 10.1016/j.crma.2010.07.008 %G en %F CRMATH_2010__348_15-16_867_0
Radjesvarane Alexandre; Y. Morimoto; S. Ukai; Chao-Jiang Xu; T. Yang. Global well-posedness theory for the spatially inhomogeneous Boltzmann equation without angular cutoff. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 867-871. doi : 10.1016/j.crma.2010.07.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.008/
[1] Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., Volume 152 (2000), pp. 327-355
[2] Uncertainty principle and kinetic equations, J. Funct. Anal., Volume 255 (2008), pp. 2013-2066
[3] Regularity of solutions for the Boltzmann equation without angular cutoff, C. R. Acad. Sci. Paris, Ser. I, Volume 347 (2009), pp. 747-752
[4] Global existence and full regularity of the Boltzmann equation without angular cutoff, Part I: Maxwellian case and small singularity (Preprint HAL) | HAL
[5] The Boltzmann equation in the whole space, Indiana Univ. Math. J., Volume 53 (2004) no. 4, pp. 1081-1094
[6] Explicit coercivity estimates for the linearized Boltzmann and Landau operators, Comm. Partial Differential Equations, Volume 31 (2006), pp. 1321-1348
Cité par Sources :
Commentaires - Politique