[Régularité de solutions pour l'équation de Boltzmann sans angulaire cutoff]
Nous considérons l'équation de Boltzmann inhomogène sans hypothèse de troncature angulaire. Nous montrons que toute solution classique est
We prove that classical solution of the spatially inhomogeneous and angular non-cutoff Boltzmann equation is
Accepté le :
Publié le :
Radjesvarane Alexandre 1 ; Yoshinore Morimoto 2 ; Seiji Ukai 3 ; Chao-Jiang Xu 4 ; Tong Yang 5
@article{CRMATH_2009__347_13-14_747_0, author = {Radjesvarane Alexandre and Yoshinore Morimoto and Seiji Ukai and Chao-Jiang Xu and Tong Yang}, title = {Regularity of solutions for the {Boltzmann} equation without angular cutoff}, journal = {Comptes Rendus. Math\'ematique}, pages = {747--752}, publisher = {Elsevier}, volume = {347}, number = {13-14}, year = {2009}, doi = {10.1016/j.crma.2009.04.025}, language = {en}, }
TY - JOUR AU - Radjesvarane Alexandre AU - Yoshinore Morimoto AU - Seiji Ukai AU - Chao-Jiang Xu AU - Tong Yang TI - Regularity of solutions for the Boltzmann equation without angular cutoff JO - Comptes Rendus. Mathématique PY - 2009 SP - 747 EP - 752 VL - 347 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2009.04.025 LA - en ID - CRMATH_2009__347_13-14_747_0 ER -
%0 Journal Article %A Radjesvarane Alexandre %A Yoshinore Morimoto %A Seiji Ukai %A Chao-Jiang Xu %A Tong Yang %T Regularity of solutions for the Boltzmann equation without angular cutoff %J Comptes Rendus. Mathématique %D 2009 %P 747-752 %V 347 %N 13-14 %I Elsevier %R 10.1016/j.crma.2009.04.025 %G en %F CRMATH_2009__347_13-14_747_0
Radjesvarane Alexandre; Yoshinore Morimoto; Seiji Ukai; Chao-Jiang Xu; Tong Yang. Regularity of solutions for the Boltzmann equation without angular cutoff. Comptes Rendus. Mathématique, Volume 347 (2009) no. 13-14, pp. 747-752. doi : 10.1016/j.crma.2009.04.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.04.025/
[1] Some solutions of the Boltzmann equation without angular cutoff, J. Statist. Phys., Volume 104 (2001), pp. 327-358
[2] Integral estimates for linear singular operator linked with Boltzmann operator. Part I: Small singularities
[3] Entropy dissipation and long-range interactions, Arch. Ration. Mech. Anal., Volume 152 (2000), pp. 327-355
[4] Uncertainty principle and kinetic equations, J. Funct. Anal., Volume 255 (2008), pp. 2013-2066
[5] R. Alexandre, Y. Morimoto, S. Ukai, C.-J. Xu, T. Yang, Regularizing effect and local existence for non-cutoff Boltzmann equation, preprint, 2008
[6] Littlewood Paley decomposition and regularity issues in Boltzmann equation homogeneous equations. I. Non-cutoff and Maxwell cases, Math. Models Methods Appl. Sci., Volume 15 (2005), pp. 907-920
[7] On the singularities of the global small solutions of the full Boltzmann equation, Monatsh. Math., Volume 131 (2000), pp. 91-108
[8] The Boltzmann Equation and Its Applications, Applied Mathematical Sciences, vol. 67, Springer-Verlag, 1988
[9] Smoothness of classical solutions to the Vlasov–Poisson–Landau System, Kinetic Related Models, Volume 1 (2008) no. 3, pp. 369-386
[10] Y. Chen, L. Desvillettes, L. He, Smoothing effects for classical solutions of the full Landau equation, Arch. Ration. Mech. Anal., in press
[11] About the regularization properties of the non-cut-off Kac equation, Comm. Math. Phys., Volume 168 (1995), pp. 417-440
[12] Regularization properties of the 2-dimensional non-radially symmetric non-cutoff spatially homogeneous Boltzmann equation for Maxwellian molecules, Trans. Theory Stat. Phys., Volume 26 (1997), pp. 341-357
[13] Smoothness of the solution of the spatially homogeneous Boltzmann equation without cutoff, Comm. Partial Differential Equations, Volume 29 (2004), pp. 133-155
[14] Regularity of entropy solutions for spatially homogeneous Boltzmann equation without angular cutoff, Kinetic Related Models, Volume 1 (2008), pp. 453-489
[15] Local solutions in Gevrey classes to the nonlinear Boltzmann equation without cutoff, Japan J. Appl. Math., Volume 1 (1984) no. 1, pp. 141-156
[16] A review of mathematical topics in collisional kinetic theory (S. Friedlander; D. Serre, eds.), Handbook of Mathematical Fluid Dynamics, vol. I, North-Holland, Amsterdam, 2002, pp. 71-305
- Global regularity estimates for the Boltzmann equation without cut-off, Journal of the American Mathematical Society, Volume 35 (2021) no. 3, p. 625 | DOI:10.1090/jams/986
- Local existence, lower mass bounds, and a new continuation criterion for the Landau equation, Journal of Differential Equations, Volume 266 (2019) no. 2-3, p. 1536 | DOI:10.1016/j.jde.2018.08.005
- A New Regularization Mechanism for the Boltzmann Equation Without Cut-Off, Communications in Mathematical Physics, Volume 348 (2016) no. 1, p. 69 | DOI:10.1007/s00220-016-2757-x
- Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff, Communications in Mathematical Physics, Volume 304 (2011) no. 2, p. 513 | DOI:10.1007/s00220-011-1242-9
Cité par 4 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier