[Points fixes topologiques dans les réseaux booléens]
Nous introduisons la notion de point fixe topologique dans les réseaux booléens : un point fixe d'un réseau booléen F est dit topologique s'il est un point fixe de tous les réseaux booléens ayant le même graphe d'interaction que F. Ensuite, nous caractérisons le nombre de points fixes topologiques d'un réseau booléen en fonction de la structure de son graphe d'interaction.
We introduce the notion of a topological fixed point in Boolean Networks: a fixed point of Boolean network F is said to be topologic if it is a fixed point of every Boolean network with the same interaction graph as the one of F. Then, we characterize the number of topological fixed points of a Boolean network according to the structure of its interaction graph.
Accepté le :
Publié le :
Loïc Paulevé 1 ; Adrien Richard 2
@article{CRMATH_2010__348_15-16_825_0, author = {Lo{\"\i}c Paulev\'e and Adrien Richard}, title = {Topological fixed points in {Boolean} networks}, journal = {Comptes Rendus. Math\'ematique}, pages = {825--828}, publisher = {Elsevier}, volume = {348}, number = {15-16}, year = {2010}, doi = {10.1016/j.crma.2010.07.014}, language = {en}, }
Loïc Paulevé; Adrien Richard. Topological fixed points in Boolean networks. Comptes Rendus. Mathématique, Volume 348 (2010) no. 15-16, pp. 825-828. doi : 10.1016/j.crma.2010.07.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.014/
[1] Maximum number of fixed points in regulatory boolean networks, Bull. Math. Biol., Volume 70 (2008), pp. 1398-1409
[2] Positive and negative circuits in discrete neural networks, IEEE Trans. Neural Networks, Volume 15 (2004), pp. 77-83
[3] Modeling and simulation of genetic regulatory systems: A literature review, J. Comput. Biol., Volume 9 (2002), pp. 67-103
[4] Metabolic stability and epigenesis in randomly connected nets, J. Theoret. Biol., Volume 22 (1969), pp. 437-467
[5] Origins of Order Self-Organization and Selection Evolution, Oxford University Press, 1993
[6] Genetic control of flower morphogenesis of Arabidopsis thaliana: a logical analysis, Bioinformatics, Volume 15 (1999), pp. 593-606
[7] Boolean formalization of genetic control circuits, J. Theoret. Biol., Volume 42 (1973), pp. 563-585
[8] Biological Feedback, CRC Press, 1990
Cité par Sources :
Commentaires - Politique