[Un théorème de type de Liouville et borne inférieure des solutions régulières pour l'équation de Lichnerowicz et pour l'équation de Ginsburg–Landau]
Dans cette Note on démontre un résultat de type de Liouville des solutions régulières pour l'équation de Lichnerowicz dans
In this Note, we prove the Liouville type result for smooth positive solutions to the Lichnerowicz equation in
Accepté le :
Publié le :
Li Ma 1
@article{CRMATH_2010__348_17-18_993_0, author = {Li Ma}, title = {Liouville type theorem and uniform bound for the {Lichnerowicz} equation and the {Ginzburg{\textendash}Landau} equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {993--996}, publisher = {Elsevier}, volume = {348}, number = {17-18}, year = {2010}, doi = {10.1016/j.crma.2010.07.031}, language = {en}, }
TY - JOUR AU - Li Ma TI - Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg–Landau equation JO - Comptes Rendus. Mathématique PY - 2010 SP - 993 EP - 996 VL - 348 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2010.07.031 LA - en ID - CRMATH_2010__348_17-18_993_0 ER -
Li Ma. Liouville type theorem and uniform bound for the Lichnerowicz equation and the Ginzburg–Landau equation. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 993-996. doi : 10.1016/j.crma.2010.07.031. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.031/
[1] Stability and instability for Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Math. Z., Volume 263 (2009) no. 1, pp. 33-67
[2] A variational analysis of Einstein-scalar field Lichnerowicz equations on compact Riemannian manifolds, Commun. Math. Phys., Volume 278 (2008), pp. 117-132
[3] Uniform bound and a non-existence result for Lichnerowicz equation in the whole n-space, C. R. Mathematique Ser. I, Volume 347 (2009), pp. 805-808
[4] Entire solutions of nonlinear poisson equations, Proc. London Math. Soc., Volume 24 (1972), pp. 343-366
[5] Deformation the metric on complete Riemannian manifolds, J. Diff. Geom., Volume 30 (1989), pp. 223-301
Cité par Sources :
☆ The research is partially supported by the National Natural Science Foundation of China 10631020 and SRFDP 20090002110019.
Commentaires - Politique