For a positive function F on which satisfies a suitable convexity condition, we consider the r-th anisotropic mean curvature for hypersurfaces in which is a generalization of the usual r-th mean curvature . By using an integral formula of Minkowski type for compact hypersurface due to H.J. He and H. Li, we introduce some new characterizations of the Wulff shape.
Étant donné une fonction positive F sur qui vérifie une condition de convexité convenable, nous considérons la r-ième courbure moyenne anisotrope pour les hypersurfaces de qui est une généralisation de la r-ième courbure moyenne usuelle . En utilisant une formule intégrale de type Minkowski pour les hypersurfaces compactes due à H.J. He et H. Li, nous introduisons de nouvelles caractérisations des formes de Wulff.
Accepted:
Published online:
Leyla Onat 1
@article{CRMATH_2010__348_17-18_997_0, author = {Leyla Onat}, title = {Some characterizations of the {Wulff} shape}, journal = {Comptes Rendus. Math\'ematique}, pages = {997--1000}, publisher = {Elsevier}, volume = {348}, number = {17-18}, year = {2010}, doi = {10.1016/j.crma.2010.07.028}, language = {en}, }
Leyla Onat. Some characterizations of the Wulff shape. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 997-1000. doi : 10.1016/j.crma.2010.07.028. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.028/
[1] The Wulff-shape minimizes an anisotropic Willmore functional, Interf. Free Bound., Volume 6 (2004) no. 3, pp. 351-359
[2] Characterizations of the Riemannian n-spheres, Amer. J. Math., Volume 81 (1959), pp. 691-708
[3] Inequalities, Cambridge University Press, Cambridge, 1934
[4] Integral formula of Minkowski type and new characterization of the Wulff shape, Acta Math. Sinica, Volume 24 (2008), pp. 697-704
[5] Some integral formulas for closed hypersurfaces, Math. Scand., Volume 2 (1954), pp. 86-294
[6] Geometry and stability of surfaces with constant anisotropic mean curvature, Indiana Univ. Math. J., Volume 54 (2005), pp. 1817-1852
[7] Stability of the Wulff shape, Proc. Amer. Math. Soc., Volume 126 (1998), pp. 3661-3667
[8] The relative differential geometry of nonparametric hypersurfaces, Duke Math. J., Volume 43 (1976), pp. 705-721
[9] Crystalline variational problems, Bull. Amer. Math. Soc., Volume 84 (1978), pp. 568-588
Cited by Sources:
Comments - Policy