[Homorphismes entre l'algèbre de Dickson–Mùi comme module sur l'algèbre de Steenrod]
L'algèbre de Dickson–Mùi consiste en les invariants sous l'action du groupe linéaire dans l'algèbre de cohomologie modulo p d'un p-groupe abélien élémentaire. C'est un module sur l'algèbre de Steenrod . Nous déterminons explicitement tous les homorphismes -linéaires entre ces algèbres ainsi que leurs automorphismes (-linéaires).
The Dickson–Mùi algebra consists of all invariants in the mod p cohomology of an elementary abelian p-group under the general linear group. It is a module over the Steenrod algebra, . We determine explicitly all the -module homomorphisms between the Dickson–Mùi algebras and all the -module automorphisms of these algebras.
Accepté le :
Publié le :
Nguyễn H.V. Hưng 1
@article{CRMATH_2010__348_17-18_1001_0, author = {Nguyễn H.V. Hưng}, title = {The homomorphisms between the {Dickson{\textendash}M\`ui} algebras as modules over the {Steenrod} algebra}, journal = {Comptes Rendus. Math\'ematique}, pages = {1001--1004}, publisher = {Elsevier}, volume = {348}, number = {17-18}, year = {2010}, doi = {10.1016/j.crma.2010.07.032}, language = {en}, }
TY - JOUR AU - Nguyễn H.V. Hưng TI - The homomorphisms between the Dickson–Mùi algebras as modules over the Steenrod algebra JO - Comptes Rendus. Mathématique PY - 2010 SP - 1001 EP - 1004 VL - 348 IS - 17-18 PB - Elsevier DO - 10.1016/j.crma.2010.07.032 LA - en ID - CRMATH_2010__348_17-18_1001_0 ER -
Nguyễn H.V. Hưng. The homomorphisms between the Dickson–Mùi algebras as modules over the Steenrod algebra. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 1001-1004. doi : 10.1016/j.crma.2010.07.032. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.07.032/
[1] The Segal conjecture for elementary abelian p-groups, Topology, Volume 24 (1985), pp. 435-460 (MR0816524)
[2] G.B. Segal's Burnside ring conjecture for , Topology, Volume 22 (1983), pp. 83-103 (MR0682060)
[3] A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc., Volume 12 (1911), pp. 75-98 (MR1500882)
[4] The action of the Steenrod squares on the modular invariants of linear groups, Proc. Amer. Math. Soc., Volume 113 (1991), pp. 1097-1104 (MR1064904)
[5] The action of the mod p Steenrod operations on the modular invariants of linear groups, Vietnam J. Math., Volume 23 (1995), pp. 39-56 (MR1367491)
[6] Spherical classes and the Dickson algebra, Math. Proc. Cambridge Philos. Soc., Volume 124 (1998), pp. 253-264 (MR1631123)
[7] A Steenrod–Milnor action ordering on Dickson invariants www.math.uoi.gr/~nondas_k (manuscript posted on his webpage)
[8] The Sullivan conjecture on maps from classifying spaces, Ann. of Math. (2), Volume 120 (1984), pp. 39-87 (MR0750716)
[9] Modular invariant theory and cohomology algebras of symmetric groups, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 22 (1975), pp. 319-369 (MR0422451)
Cité par Sources :
☆ The work was supported in part by a grant of the NAFOSTED.
Commentaires - Politique