Comptes Rendus
Mathematical Analysis
How likely is Buffon's ring toss to intersect a planar Cantor set?
[Quelles sont les chances pour un cercle de Buffon lancé sur le plan de faire l'intersection avec une voisinage d'un ensemble de Cantor ?]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 963-966.

Dans Bateman et Volberg (2008) [1], on a démontré que la longueur de Favard de la stage n-ième d'ensemble 1/4 de Cantor décroit au plus comme Clognn. Dans Bond et Volberg (2008) [2], on a introduit une longueur circulaire de Favard, et on a démontré que les même estimations sont valable, au moins si le rayon du cercle satisfait rCn. Le résulat de Bond et Volberg (2008) [2] mene naturallement à une hypothèse qui (si soit valable) donne la preuve que le résultat concernant la fonction maximale circulaire de Seeger, Tao et Wright (2005) [3] est exact.

In Bateman and Volberg (2008) [1], it was shown that the n-th partial 1/4 Cantor in the plane set decays in Favard length no faster than Clognn. In Bond and Volberg (2008) [2], the so-called circular Favard length of the same set is studied, and the same estimate is shown to persist when the circle has radius rCn. By considering characteristic functions, the result of Bond and Volberg (2008) [2] naturally leads to a conjecture which (if true) would imply the sharpness of the LloglogL boundedness of the circular maximal operator proved by Seeger, Tao and Wright (2005) [3].

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.08.002

Matthew Bond 1

1 Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA
@article{CRMATH_2010__348_17-18_963_0,
     author = {Matthew Bond},
     title = {How likely is {Buffon's} ring toss to intersect a planar {Cantor} set?},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {963--966},
     publisher = {Elsevier},
     volume = {348},
     number = {17-18},
     year = {2010},
     doi = {10.1016/j.crma.2010.08.002},
     language = {en},
}
TY  - JOUR
AU  - Matthew Bond
TI  - How likely is Buffon's ring toss to intersect a planar Cantor set?
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 963
EP  - 966
VL  - 348
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2010.08.002
LA  - en
ID  - CRMATH_2010__348_17-18_963_0
ER  - 
%0 Journal Article
%A Matthew Bond
%T How likely is Buffon's ring toss to intersect a planar Cantor set?
%J Comptes Rendus. Mathématique
%D 2010
%P 963-966
%V 348
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2010.08.002
%G en
%F CRMATH_2010__348_17-18_963_0
Matthew Bond. How likely is Buffon's ring toss to intersect a planar Cantor set?. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 963-966. doi : 10.1016/j.crma.2010.08.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.08.002/

[1] M. Bateman; A. Volberg An estimate from below for the Buffon needle probability of the four-corner Cantor set, 2008 (pp. 1–11) | arXiv

[2] M. Bond; A. Volberg Estimates from below of the Buffon noodle probability for undercooked noodles, 2008 (pp. 1–10) | arXiv

[3] A. Seeger, T. Tao, J. Wright, Notes on the lacunary spherical maximal function, preprint, 2005, pp. 1–14.

Cité par Sources :

Commentaires - Politique