[Une estimation de la probabilité pour l'aiguille de Buffon de se situer dans un ϵ-voisinage de l'ensemble de Sierpinski]
On donne une estimation de la probabilité pour que l'aiguille de Buffon soit ϵ-proche d'un ensemble de Cantor–Sierpinski. On trouve une majoration de cette probabilité en
In recent years, relatively sharp quantitative results in the spirit of the Besicovitch projection theorem have been obtained for self-similar sets by studying the
Accepté le :
Publié le :
Matthew Bond 1 ; Alexander Volberg 1, 2
@article{CRMATH_2010__348_11-12_653_0, author = {Matthew Bond and Alexander Volberg}, title = {Buffon needle lands in \protect\emph{\ensuremath{\epsilon}}-neighborhood of a 1-dimensional {Sierpinski} {Gasket} with probability at most $ {|\mathrm{log}\phantom{\rule{0.2em}{0ex}}\ensuremath{\epsilon}|}^{-c}$}, journal = {Comptes Rendus. Math\'ematique}, pages = {653--656}, publisher = {Elsevier}, volume = {348}, number = {11-12}, year = {2010}, doi = {10.1016/j.crma.2010.04.006}, language = {en}, }
TY - JOUR AU - Matthew Bond AU - Alexander Volberg TI - Buffon needle lands in ϵ-neighborhood of a 1-dimensional Sierpinski Gasket with probability at most $ {|\mathrm{log}\phantom{\rule{0.2em}{0ex}}ϵ|}^{-c}$ JO - Comptes Rendus. Mathématique PY - 2010 SP - 653 EP - 656 VL - 348 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2010.04.006 LA - en ID - CRMATH_2010__348_11-12_653_0 ER -
%0 Journal Article %A Matthew Bond %A Alexander Volberg %T Buffon needle lands in ϵ-neighborhood of a 1-dimensional Sierpinski Gasket with probability at most $ {|\mathrm{log}\phantom{\rule{0.2em}{0ex}}ϵ|}^{-c}$ %J Comptes Rendus. Mathématique %D 2010 %P 653-656 %V 348 %N 11-12 %I Elsevier %R 10.1016/j.crma.2010.04.006 %G en %F CRMATH_2010__348_11-12_653_0
Matthew Bond; Alexander Volberg. Buffon needle lands in ϵ-neighborhood of a 1-dimensional Sierpinski Gasket with probability at most $ {|\mathrm{log}\phantom{\rule{0.2em}{0ex}}ϵ|}^{-c}$. Comptes Rendus. Mathématique, Volume 348 (2010) no. 11-12, pp. 653-656. doi : 10.1016/j.crma.2010.04.006. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.04.006/
[1] The Power Law for Buffon's Needle Landing Near the Sierpinski Gasket, 2009 (pp. 1–34) | arXiv
[2] The Geometry of Fractal Sets, Cambridge Tracts in Mathematics, vol. 85, Cambridge University Press, Cambridge, New York, 1986
[3] Favard length of product Cantor sets, February 5, 2009 | arXiv
[4] The power law for the Buffon needle probability of the four-corner Cantor set, 2008 (pp. 1–15) | arXiv
[5] How likely is Buffon's needle to fall near a planar Cantor set?, Pacific J. Math., Volume 204 (2002) no. 2, pp. 473-496
[6] A quantitative version of the Besicovitch projection theorem via multiscale analysis, 18 June 2007 (pp. 1–28) | arXiv
- Quantitative Besicovitch projection theorem for irregular sets of directions, Proceedings of the London Mathematical Society, Volume 130 (2025) no. 3 | DOI:10.1112/plms.70037
- Structure of sets with nearly maximal Favard length, Analysis PDE, Volume 17 (2024) no. 4, p. 1473 | DOI:10.2140/apde.2024.17.1473
- The Buffon's needle problem for random planar disk-like Cantor sets, Journal of Mathematical Analysis and Applications, Volume 529 (2024) no. 2, p. 127622 | DOI:10.1016/j.jmaa.2023.127622
- A Quantification of a Besicovitch Non-linear Projection Theorem via Multiscale Analysis, The Journal of Geometric Analysis, Volume 32 (2022) no. 4 | DOI:10.1007/s12220-021-00793-z
- Plenty of big projections imply big pieces of Lipschitz graphs, Inventiones mathematicae, Volume 226 (2021) no. 2, p. 653 | DOI:10.1007/s00222-021-01055-z
- Recent Progress on Favard Length Estimates for Planar Cantor Sets, Operator-Related Function Theory and Time-Frequency Analysis, Volume 9 (2015), p. 117 | DOI:10.1007/978-3-319-08557-9_5
- Quantitative visibility estimates for unrectifiable sets in the plane, Transactions of the American Mathematical Society, Volume 368 (2015) no. 8, p. 5475 | DOI:10.1090/tran/6585
- Non-homogeneous harmonic analysis: 16 years of development, Russian Mathematical Surveys, Volume 68 (2013) no. 6, p. 973 | DOI:10.1070/rm2013v068n06abeh004868
- Неоднородный гармонический анализ: 16 лет развития, Успехи математических наук, Volume 68 (2013) no. 6(414), p. 3 | DOI:10.4213/rm9556
Cité par 9 documents. Sources : Crossref
Commentaires - Politique