[Estimation de l'erreur de modélisation pour le modèle de plaque de Kirchhoff–Love]
Dans ce travail on considère le modèle de Kirchhoff–Love pour approcher les problèmes de plaques minces sous certaines conditions. Nous présentons des majorants d'erreur calculables. La borne de l'erreur relative converge comme en terme du paramètre d'épaisseur h pourvu que la KL solution ait un peu plus de régularité.
In this Note we consider the Kirchhoff–Love model for approximating problems in linear elasticity on thin plates under certain hypotheses. We will present computable error majorants for the arising modelling error. The majorant for the relative error converges with a rate in the thickness parameter h provided that the KL solution possesses extra reqularity.
Accepté le :
Publié le :
Sergey Repin 1 ; Stefan A. Sauter 2
@article{CRMATH_2010__348_17-18_1039_0, author = {Sergey Repin and Stefan A. Sauter}, title = {Estimates of the modeling error for the {Kirchhoff{\textendash}Love} plate model}, journal = {Comptes Rendus. Math\'ematique}, pages = {1039--1043}, publisher = {Elsevier}, volume = {348}, number = {17-18}, year = {2010}, doi = {10.1016/j.crma.2010.09.004}, language = {en}, }
Sergey Repin; Stefan A. Sauter. Estimates of the modeling error for the Kirchhoff–Love plate model. Comptes Rendus. Mathématique, Volume 348 (2010) no. 17-18, pp. 1039-1043. doi : 10.1016/j.crma.2010.09.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.004/
[1] Derivation and justification of plate models by variational methods (M. Fortin, ed.), Plates and Shells, Quebec, 1996, CRM Proceedings and Lecture Notes, vol. 21, American Mathematical Society, Providence, RI, 1996, pp. 1-20
[2] D. Braess, S. Sauter, C. Schwab, On the justification of plate models, Journal of Elasticity, in press.
[3] Mathematical Elasticity, vol. II: Theory of Plates, North-Holland, Amsterdam, 1997
[4] A justification of a nonlinear model in plate theory, Comput. Methods Appl. Mech. Engrg., Volume 17/18 (1979), pp. 227-258
[5] Asymptotics of arbitrary order in thin elastic plates and optimal estimates for the Kirchhoff–Love model, Asymptot. Anal., Volume 13 (1996), pp. 167-197
[6] Comparaison entre les modeles tridimensionnels et bidimensionnels de plaque en élasticité, RAIRO Anal. Numer., Volume 15 (1981), pp. 331-369
[7] Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J. Reine Angew. Math., Volume 40 (1850), pp. 51-58
[8] Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätstheorie, Arch. Ration. Mech. Anal., Volume 4 (1959), pp. 145-152
[9] Asymptotic consistency of the polynomial approximation in the linearized plate theory. Application to the Reissner–Mindlin model, Lyon, 1995 (ESAIM Proc.), Volume vol. 2, Soc. Math. Appl. Indust., Paris (1997), pp. 203-213
[10] Construction d'un modèle d'évolution de plaques avec terme d'inertie de rotation, Ann. Mat. Pura Appl., Volume CXXXIX (1985), pp. 361-400
[11] Estimates for errors in two-dimensional models of elasticity theory, J. Math. Sci. (N. Y.), Volume 106 (2001), pp. 3027-3041
[12] A Posteriori Estimates for Partial Differential Equations, Walter de Gruyter, Berlin, 2008
[13] S. Repin, S. Sauter, Computable estimates of the modeling error related to Kirchhoff–Love plate model, Preprint Series, No. 11-2009, Inst. für Mathematik, University of Zurich, 2009.
[14] On asymptotically exact equations of thin plates of complex structure, J. Appl. Math. Mech., Volume 37 (1974) no. 1973, pp. 867-877
Cité par Sources :
Commentaires - Politique