[Estimations à posteriori de type fonctionnel pour les problèmes de réaction–diffusion]
Cette Note s'intéresse aux estimations à posteriori de type fonctionnel pour les problèmes de réaction–diffusion. Ces estimations fonctionnelles à posteriori sont obtenues par des méthodes purement fonctionnelles ne faisant en particulier pas appel à des propriétés d'orthogonalité de Galerkine ou des propriétés spéciales des espaces d'approximation. De ce fait elles sont indépendantes des tailles de maillage et fournissent des erreurs fiables pour toute approximation conforme. La généralisation au cas non conforme est également possible. Les estimations établies ici sont efficaces aussi bien dans le cas de coefficients constants que de coefficients oscillant arbitrairement dans certaines parties du domaine. Une telle robustesse est importante dans les applications où certains paramètres peuvent être très grands dans certaines parties et quasi nuls dans d'autres. On montre également que les estimations à posteriori que nous obtenons sont directement calculables et fournissent des estimations optimales.
The Note is concerned with functional type a posteriori estimates for stationary reaction–diffusion problems. Functional a posteriori estimates are derived on purely functional grounds without using any type of the Galerkin orthogonality condition and special properties of approximation spaces. Therefore, they contain no mesh-dependent constants and provide guaranteed error bounds for any conforming approximation. Generalizations to non-conforming approximations are also possible. Estimates derived in the Note are equally efficient for the problems with constant reaction parameter and for those admitting a high variability of it in different parts of the domain. Such a robustness with respect to the reaction parameter is important because in applications the reaction parameter my often be large in one subdomain and almost zero in another one. It is shown that the a posteriori bounds obtained are directly computable and provide sharp error bounds.
Accepté le :
Publié le :
Sergey Repin 1 ; Stefan Sauter 2
@article{CRMATH_2006__343_5_349_0, author = {Sergey Repin and Stefan Sauter}, title = {Functional a posteriori estimates for the reaction{\textendash}diffusion problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {349--354}, publisher = {Elsevier}, volume = {343}, number = {5}, year = {2006}, doi = {10.1016/j.crma.2006.06.024}, language = {en}, }
Sergey Repin; Stefan Sauter. Functional a posteriori estimates for the reaction–diffusion problem. Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 349-354. doi : 10.1016/j.crma.2006.06.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.024/
[1] A Posteriori Error Estimation in Finite Element Analysis, Wiley, 2000
[2] A-posteriori error estimates for the finite element method, Int. J. Numer. Methods Engrg., Volume 12 (1978), pp. 1597-1615
[3] Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., Volume 15 (1978), pp. 736-754
[4] The Finite Element Method and its Reliability, Claderon Press, Oxford, 2001
[5] A posteriori error estimation for variational problems with uniformly convex functionals, Math. Comp., Volume 69 (2000), pp. 481-500
[6] A posteriori error estimation for the Dirichlet problem with account of the error in boundary conditions, Computing, Volume 70 (2003), pp. 205-233
[7] S. Repin, S. Sauter, A. Smolianski, Two-sided a posteriori error estimates for mixed formulations of elliptic problems, Technical report, Universität Zürich, 2005, Preprint no. 21-2005, SIAM J. Numer. Anal., in press
[8] A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement, Wiley and Teubner, 1996
[9] Robust a posteriori error estimators for singularly perturbed reaction–diffusion equations, Numer. Math., Volume 78 (1998), pp. 479-493
- A posteriori error identities and estimates of modelling errors, Error Control, Adaptive Discretizations, and Applications, Part 1, Volume 58 (2024), p. 245 | DOI:10.1016/bs.aams.2024.03.006
- Error identities for the reaction-convection-diffusion problem and applications to a posteriori error control, Russian Journal of Numerical Analysis and Mathematical Modelling, Volume 37 (2022) no. 4, pp. 241-252 | DOI:10.1515/rnam-2022-0021 | Zbl:1502.65092
- Guaranteed and computable error bounds for approximations constructed by an iterative decoupling of the Biot problem, Computers Mathematics with Applications, Volume 91 (2021), pp. 122-149 | DOI:10.1016/j.camwa.2020.05.005 | Zbl:1524.76458
- Estimates of the deviation from exact solutions of boundary value problems in measures stronger than the energy norm, Computational Mathematics and Mathematical Physics, Volume 60 (2020) no. 5, pp. 749-765 | DOI:10.1134/s0965542520050140 | Zbl:1450.35017
- Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction-diffusion problems, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 54 (2020) no. 6, pp. 1951-1973 | DOI:10.1051/m2an/2020034 | Zbl:1470.65199
- On a Renewed Approach to A Posteriori Error Bounds for Approximate Solutions of Reaction-Diffusion Equations, Advanced Finite Element Methods with Applications, Volume 128 (2019), p. 221 | DOI:10.1007/978-3-030-14244-5_12
- On error control in the numerical solution of reaction-diffusion equation, Computational Mathematics and Mathematical Physics, Volume 59 (2019) no. 1, pp. 1-18 | DOI:10.1134/s0965542519010123 | Zbl:1422.65394
- A posteriori error estimators for stabilized finite element approximations of an optimal control problem, Computer Methods in Applied Mechanics and Engineering, Volume 340 (2018), pp. 147-177 | DOI:10.1016/j.cma.2018.05.036 | Zbl:1440.49035
- On the accuracy of a posteriori functional error majorants for approximate solutions of elliptic equations, Doklady Mathematics, Volume 96 (2017) no. 1, pp. 380-383 | DOI:10.1134/s1064562417040287 | Zbl:1376.65139
- О ТОЧНОСТИ АПОСТЕРИОРНЫХ ФУНКЦИОНАЛЬНЫХ МАЖОРАНТ ПОГРЕШНОСТИ ПРИБЛИЖЁННЫХ РЕШЕНИЙ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ, "Доклады Академии наук", Доклады Академии Наук (2017) no. 6, p. 605 | DOI:10.7868/s086956521724001x
- Estimates for the difference between exact and approximate solutions of parabolic equations on the basis of Poincaré inequalities for traces of functions on the boundary, Differential Equations, Volume 52 (2016) no. 10, pp. 1355-1365 | DOI:10.1134/s0012266116100116 | Zbl:1361.65068
- Consistent robust a posteriori error majorants for approximate solutions of diffusion-reaction equations, IOP Conference Series: Materials Science and Engineering, Volume 158 (2016), p. 012056 | DOI:10.1088/1757-899x/158/1/012056
- Equilibration a posteriori error estimation for convection-diffusion-reaction problems, Journal of Scientific Computing, Volume 67 (2016) no. 2, pp. 747-768 | DOI:10.1007/s10915-015-0108-2 | Zbl:1353.65113
- Guaranteed a posteriori error estimates for nonconforming finite element approximations to a singularly perturbed reaction-diffusion problem, Applied Numerical Mathematics, Volume 94 (2015), pp. 1-15 | DOI:10.1016/j.apnum.2015.02.002 | Zbl:1325.65159
- A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne-Weinberger inequality, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 6, pp. 2659-2677 | DOI:10.3934/dcds.2015.35.2659 | Zbl:1334.35126
- Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities, Journal of Mathematical Sciences (New York), Volume 210 (2015) no. 6, pp. 759-778 | DOI:10.1007/s10958-015-2588-x | Zbl:1331.35186
- A posteriori modeling error estimates for the assumption of perfect incompressibility in the Navier-Stokes equation, SIAM Journal on Numerical Analysis, Volume 53 (2015) no. 5, pp. 2178-2205 | DOI:10.1137/140966654 | Zbl:1322.76051
- Guaranteed Error Bounds I, Accuracy Verification Methods, Volume 32 (2014), p. 45 | DOI:10.1007/978-94-007-7581-7_3
- A posteriori error estimation based on conservative flux reconstruction for nonconforming finite element approximations to a singularly perturbed reaction-diffusion problem on anisotropic meshes, Applied Mathematics and Computation, Volume 232 (2014), pp. 1062-1075 | DOI:10.1016/j.amc.2014.01.145 | Zbl:1410.65427
- Computable estimates of the distance to the exact solution of the evolutionary reaction-diffusion equation, Applied Mathematics and Computation, Volume 247 (2014), pp. 329-347 | DOI:10.1016/j.amc.2014.08.055 | Zbl:1338.35244
- Complementary error bounds for elliptic systems and applications, Applied Mathematics and Computation, Volume 219 (2013) no. 13, pp. 7194-7205 | DOI:10.1016/j.amc.2011.05.108 | Zbl:1288.65171
- Fully computable a posteriori error bounds for stabilised FEM approximations of convection-reaction-diffusion problems in three dimensions, International Journal for Numerical Methods in Fluids, Volume 73 (2013) no. 9, pp. 765-790 | DOI:10.1002/fld.3822 | Zbl:1455.65207
- Upper bound for the approximation error for the Kirchhoff-Love arch problem, Numerical methods for differential equations, optimization, and technological problems. Dedicated to Professor P. Neittaanmäki on his 60th birthday. Selected papers based on the presentations at the ECCOMAS thematic conference computational analysis and optimization (CAO 2011), Jyväskylä, Finland, June 9–11, 2011., Dordrecht: Springer, 2013, pp. 159-173 | DOI:10.1007/978-94-007-5288-7_9 | Zbl:1311.74065
- Combineda posteriorimodeling-discretization error estimate for elliptic problems with complicated interfaces, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 46 (2012) no. 6, p. 1389 | DOI:10.1051/m2an/2012007
- Complementarity based a posteriori error estimates and their properties, Mathematics and Computers in Simulation, Volume 82 (2012) no. 10, pp. 2033-2046 | DOI:10.1016/j.matcom.2011.06.001 | Zbl:1256.65097
- Two-sided estimates of the solution set for the reaction-diffusion problem with uncertain data, Applied and numerical partial differential equations. Scientific computing in simulation, optimization and control in a multidisciplinary context, Dordrecht: Springer, 2010, pp. 183-198 | DOI:10.1007/978-90-481-3239-3_14 | Zbl:1186.65144
- Guaranteed error bounds for conforming approximations of a Maxwell type problem, Applied and numerical partial differential equations. Scientific computing in simulation, optimization and control in a multidisciplinary context, Dordrecht: Springer, 2010, pp. 199-211 | DOI:10.1007/978-90-481-3239-3_15 | Zbl:1186.65145
- Computable Error Indicators for Approximate Solutions of Elliptic Problems, ECCOMAS Multidisciplinary Jubilee Symposium, Volume 14 (2009), p. 203 | DOI:10.1007/978-1-4020-9231-2_14
- Guaranteed and robust a posteriori error estimates for singularly perturbed reaction-diffusion problems, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 43 (2009) no. 5, pp. 867-888 | DOI:10.1051/m2an/2009012 | Zbl:1190.65164
- Exact Bounds for Linear Outputs of the Advection-Diffusion-Reaction Equation Using Flux-Free Error Estimates, SIAM Journal on Scientific Computing, Volume 31 (2009) no. 4, p. 3064 | DOI:10.1137/080724356
- A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 346 (2008) no. 11-12, pp. 687-690 | DOI:10.1016/j.crma.2008.03.006 | Zbl:1142.65086
- Functional a posteriori error estimates for the reaction-convection-diffusion problem, Journal of Mathematical Sciences, Volume 152 (2008) no. 5, p. 690 | DOI:10.1007/s10958-008-9092-5
- A posteriori error estimates for the generalized Stokes problem, Journal of Mathematical Sciences (New York), Volume 142 (2007) no. 1, pp. 1828-1843 | DOI:10.1007/s10958-007-0092-7 | Zbl:1202.65150
Cité par 33 documents. Sources : Crossref, zbMATH
Commentaires - Politique