Comptes Rendus
Numerical Analysis
Functional a posteriori estimates for the reaction–diffusion problem
[Estimations à posteriori de type fonctionnel pour les problèmes de réaction–diffusion]
Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 349-354.

Cette Note s'intéresse aux estimations à posteriori de type fonctionnel pour les problèmes de réaction–diffusion. Ces estimations fonctionnelles à posteriori sont obtenues par des méthodes purement fonctionnelles ne faisant en particulier pas appel à des propriétés d'orthogonalité de Galerkine ou des propriétés spéciales des espaces d'approximation. De ce fait elles sont indépendantes des tailles de maillage et fournissent des erreurs fiables pour toute approximation conforme. La généralisation au cas non conforme est également possible. Les estimations établies ici sont efficaces aussi bien dans le cas de coefficients constants que de coefficients oscillant arbitrairement dans certaines parties du domaine. Une telle robustesse est importante dans les applications où certains paramètres peuvent être très grands dans certaines parties et quasi nuls dans d'autres. On montre également que les estimations à posteriori que nous obtenons sont directement calculables et fournissent des estimations optimales.

The Note is concerned with functional type a posteriori estimates for stationary reaction–diffusion problems. Functional a posteriori estimates are derived on purely functional grounds without using any type of the Galerkin orthogonality condition and special properties of approximation spaces. Therefore, they contain no mesh-dependent constants and provide guaranteed error bounds for any conforming approximation. Generalizations to non-conforming approximations are also possible. Estimates derived in the Note are equally efficient for the problems with constant reaction parameter and for those admitting a high variability of it in different parts of the domain. Such a robustness with respect to the reaction parameter is important because in applications the reaction parameter my often be large in one subdomain and almost zero in another one. It is shown that the a posteriori bounds obtained are directly computable and provide sharp error bounds.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2006.06.024

Sergey Repin 1 ; Stefan Sauter 2

1 V.A. Steklov Institute of Mathematics, Fontanka 27, 191 011, St. Petersburg, Russia
2 Institute of Mathematics, Zurich University, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
@article{CRMATH_2006__343_5_349_0,
     author = {Sergey Repin and Stefan Sauter},
     title = {Functional a posteriori estimates for the reaction{\textendash}diffusion problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {349--354},
     publisher = {Elsevier},
     volume = {343},
     number = {5},
     year = {2006},
     doi = {10.1016/j.crma.2006.06.024},
     language = {en},
}
TY  - JOUR
AU  - Sergey Repin
AU  - Stefan Sauter
TI  - Functional a posteriori estimates for the reaction–diffusion problem
JO  - Comptes Rendus. Mathématique
PY  - 2006
SP  - 349
EP  - 354
VL  - 343
IS  - 5
PB  - Elsevier
DO  - 10.1016/j.crma.2006.06.024
LA  - en
ID  - CRMATH_2006__343_5_349_0
ER  - 
%0 Journal Article
%A Sergey Repin
%A Stefan Sauter
%T Functional a posteriori estimates for the reaction–diffusion problem
%J Comptes Rendus. Mathématique
%D 2006
%P 349-354
%V 343
%N 5
%I Elsevier
%R 10.1016/j.crma.2006.06.024
%G en
%F CRMATH_2006__343_5_349_0
Sergey Repin; Stefan Sauter. Functional a posteriori estimates for the reaction–diffusion problem. Comptes Rendus. Mathématique, Volume 343 (2006) no. 5, pp. 349-354. doi : 10.1016/j.crma.2006.06.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2006.06.024/

[1] M. Ainsworth; J.T. Oden A Posteriori Error Estimation in Finite Element Analysis, Wiley, 2000

[2] I. Babuška; W.C. Rheinboldt A-posteriori error estimates for the finite element method, Int. J. Numer. Methods Engrg., Volume 12 (1978), pp. 1597-1615

[3] I. Babuška; W.C. Rheinboldt Error estimates for adaptive finite element computations, SIAM J. Numer. Anal., Volume 15 (1978), pp. 736-754

[4] I. Babuška; T. Strouboulis The Finite Element Method and its Reliability, Claderon Press, Oxford, 2001

[5] S. Repin A posteriori error estimation for variational problems with uniformly convex functionals, Math. Comp., Volume 69 (2000), pp. 481-500

[6] S. Repin; S. Sauter; A. Smolianski A posteriori error estimation for the Dirichlet problem with account of the error in boundary conditions, Computing, Volume 70 (2003), pp. 205-233

[7] S. Repin, S. Sauter, A. Smolianski, Two-sided a posteriori error estimates for mixed formulations of elliptic problems, Technical report, Universität Zürich, 2005, Preprint no. 21-2005, SIAM J. Numer. Anal., in press

[8] R. Verfürth A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement, Wiley and Teubner, 1996

[9] R. Verfürth Robust a posteriori error estimators for singularly perturbed reaction–diffusion equations, Numer. Math., Volume 78 (1998), pp. 479-493

  • Sergey I. Repin A posteriori error identities and estimates of modelling errors, Error Control, Adaptive Discretizations, and Applications, Part 1, Volume 58 (2024), p. 245 | DOI:10.1016/bs.aams.2024.03.006
  • Sergey I. Repin Error identities for the reaction-convection-diffusion problem and applications to a posteriori error control, Russian Journal of Numerical Analysis and Mathematical Modelling, Volume 37 (2022) no. 4, pp. 241-252 | DOI:10.1515/rnam-2022-0021 | Zbl:1502.65092
  • Kundan Kumar; Svetlana Kyas; Jan Martin Nordbotten; Sergey Repin Guaranteed and computable error bounds for approximations constructed by an iterative decoupling of the Biot problem, Computers Mathematics with Applications, Volume 91 (2021), pp. 122-149 | DOI:10.1016/j.camwa.2020.05.005 | Zbl:1524.76458
  • S. I. Repin Estimates of the deviation from exact solutions of boundary value problems in measures stronger than the energy norm, Computational Mathematics and Mathematical Physics, Volume 60 (2020) no. 5, pp. 749-765 | DOI:10.1134/s0965542520050140 | Zbl:1450.35017
  • Iain Smears; Martin Vohralík Simple and robust equilibrated flux a posteriori estimates for singularly perturbed reaction-diffusion problems, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 54 (2020) no. 6, pp. 1951-1973 | DOI:10.1051/m2an/2020034 | Zbl:1470.65199
  • Vadim G. Korneev On a Renewed Approach to A Posteriori Error Bounds for Approximate Solutions of Reaction-Diffusion Equations, Advanced Finite Element Methods with Applications, Volume 128 (2019), p. 221 | DOI:10.1007/978-3-030-14244-5_12
  • V. G. Korneev On error control in the numerical solution of reaction-diffusion equation, Computational Mathematics and Mathematical Physics, Volume 59 (2019) no. 1, pp. 1-18 | DOI:10.1134/s0965542519010123 | Zbl:1422.65394
  • Alejandro Allendes; Enrique Otárola; Richard Rankin A posteriori error estimators for stabilized finite element approximations of an optimal control problem, Computer Methods in Applied Mechanics and Engineering, Volume 340 (2018), pp. 147-177 | DOI:10.1016/j.cma.2018.05.036 | Zbl:1440.49035
  • V. G. Korneev On the accuracy of a posteriori functional error majorants for approximate solutions of elliptic equations, Doklady Mathematics, Volume 96 (2017) no. 1, pp. 380-383 | DOI:10.1134/s1064562417040287 | Zbl:1376.65139
  • В. Г. Корнеев О ТОЧНОСТИ АПОСТЕРИОРНЫХ ФУНКЦИОНАЛЬНЫХ МАЖОРАНТ ПОГРЕШНОСТИ ПРИБЛИЖЁННЫХ РЕШЕНИЙ ЭЛЛИПТИЧЕСКИХ УРАВНЕНИЙ, "Доклады Академии наук", Доклады Академии Наук (2017) no. 6, p. 605 | DOI:10.7868/s086956521724001x
  • S. V. Matculevich; S. I. Repin Estimates for the difference between exact and approximate solutions of parabolic equations on the basis of Poincaré inequalities for traces of functions on the boundary, Differential Equations, Volume 52 (2016) no. 10, pp. 1355-1365 | DOI:10.1134/s0012266116100116 | Zbl:1361.65068
  • V G Korneev Consistent robust a posteriori error majorants for approximate solutions of diffusion-reaction equations, IOP Conference Series: Materials Science and Engineering, Volume 158 (2016), p. 012056 | DOI:10.1088/1757-899x/158/1/012056
  • M. Eigel; C. Merdon Equilibration a posteriori error estimation for convection-diffusion-reaction problems, Journal of Scientific Computing, Volume 67 (2016) no. 2, pp. 747-768 | DOI:10.1007/s10915-015-0108-2 | Zbl:1353.65113
  • Bei Zhang; Shaochun Chen; Jikun Zhao Guaranteed a posteriori error estimates for nonconforming finite element approximations to a singularly perturbed reaction-diffusion problem, Applied Numerical Mathematics, Volume 94 (2015), pp. 1-15 | DOI:10.1016/j.apnum.2015.02.002 | Zbl:1325.65159
  • Svetlana Matculevich; Pekka Neittaanmäki; Sergey Repin A posteriori error estimates for time-dependent reaction-diffusion problems based on the Payne-Weinberger inequality, Discrete and Continuous Dynamical Systems, Volume 35 (2015) no. 6, pp. 2659-2677 | DOI:10.3934/dcds.2015.35.2659 | Zbl:1334.35126
  • S. Matculevich; S. Repin Estimates of the distance to the exact solution of parabolic problems based on local Poincaré type inequalities, Journal of Mathematical Sciences (New York), Volume 210 (2015) no. 6, pp. 759-778 | DOI:10.1007/s10958-015-2588-x | Zbl:1331.35186
  • Julian Fischer A posteriori modeling error estimates for the assumption of perfect incompressibility in the Navier-Stokes equation, SIAM Journal on Numerical Analysis, Volume 53 (2015) no. 5, pp. 2178-2205 | DOI:10.1137/140966654 | Zbl:1322.76051
  • Olli Mali; Pekka Neittaanmäki; Sergey Repin Guaranteed Error Bounds I, Accuracy Verification Methods, Volume 32 (2014), p. 45 | DOI:10.1007/978-94-007-7581-7_3
  • Bei Zhang; Shaochun Chen; Jikun Zhao A posteriori error estimation based on conservative flux reconstruction for nonconforming finite element approximations to a singularly perturbed reaction-diffusion problem on anisotropic meshes, Applied Mathematics and Computation, Volume 232 (2014), pp. 1062-1075 | DOI:10.1016/j.amc.2014.01.145 | Zbl:1410.65427
  • S. Matculevich; S. Repin Computable estimates of the distance to the exact solution of the evolutionary reaction-diffusion equation, Applied Mathematics and Computation, Volume 247 (2014), pp. 329-347 | DOI:10.1016/j.amc.2014.08.055 | Zbl:1338.35244
  • Tomáš Vejchodský Complementary error bounds for elliptic systems and applications, Applied Mathematics and Computation, Volume 219 (2013) no. 13, pp. 7194-7205 | DOI:10.1016/j.amc.2011.05.108 | Zbl:1288.65171
  • Mark Ainsworth; Alejandro Allendes; Gabriel R. Barrenechea; Richard Rankin Fully computable a posteriori error bounds for stabilised FEM approximations of convection-reaction-diffusion problems in three dimensions, International Journal for Numerical Methods in Fluids, Volume 73 (2013) no. 9, pp. 765-790 | DOI:10.1002/fld.3822 | Zbl:1455.65207
  • Olli Mali Upper bound for the approximation error for the Kirchhoff-Love arch problem, Numerical methods for differential equations, optimization, and technological problems. Dedicated to Professor P. Neittaanmäki on his 60th birthday. Selected papers based on the presentations at the ECCOMAS thematic conference computational analysis and optimization (CAO 2011), Jyväskylä, Finland, June 9–11, 2011., Dordrecht: Springer, 2013, pp. 159-173 | DOI:10.1007/978-94-007-5288-7_9 | Zbl:1311.74065
  • Sergey I. Repin; Tatiana S. Samrowski; Stéfan A. Sauter Combineda posteriorimodeling-discretization error estimate for elliptic problems with complicated interfaces, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 46 (2012) no. 6, p. 1389 | DOI:10.1051/m2an/2012007
  • Tomáš Vejchodský Complementarity based a posteriori error estimates and their properties, Mathematics and Computers in Simulation, Volume 82 (2012) no. 10, pp. 2033-2046 | DOI:10.1016/j.matcom.2011.06.001 | Zbl:1256.65097
  • Olli Mali; Sergey Repin Two-sided estimates of the solution set for the reaction-diffusion problem with uncertain data, Applied and numerical partial differential equations. Scientific computing in simulation, optimization and control in a multidisciplinary context, Dordrecht: Springer, 2010, pp. 183-198 | DOI:10.1007/978-90-481-3239-3_14 | Zbl:1186.65144
  • Pekka Neittaanmäki; Sergey Repin Guaranteed error bounds for conforming approximations of a Maxwell type problem, Applied and numerical partial differential equations. Scientific computing in simulation, optimization and control in a multidisciplinary context, Dordrecht: Springer, 2010, pp. 199-211 | DOI:10.1007/978-90-481-3239-3_15 | Zbl:1186.65145
  • P. Neittaanmäki; S. Repin Computable Error Indicators for Approximate Solutions of Elliptic Problems, ECCOMAS Multidisciplinary Jubilee Symposium, Volume 14 (2009), p. 203 | DOI:10.1007/978-1-4020-9231-2_14
  • Ibrahim Cheddadi; Radek Fučík; Mariana I. Prieto; Martin Vohralík Guaranteed and robust a posteriori error estimates for singularly perturbed reaction-diffusion problems, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 43 (2009) no. 5, pp. 867-888 | DOI:10.1051/m2an/2009012 | Zbl:1190.65164
  • Núria Parés; Pedro Díez; Antonio Huerta Exact Bounds for Linear Outputs of the Advection-Diffusion-Reaction Equation Using Flux-Free Error Estimates, SIAM Journal on Scientific Computing, Volume 31 (2009) no. 4, p. 3064 | DOI:10.1137/080724356
  • Martin Vohralík A posteriori error estimation in the conforming finite element method based on its local conservativity and using local minimization, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 346 (2008) no. 11-12, pp. 687-690 | DOI:10.1016/j.crma.2008.03.006 | Zbl:1142.65086
  • S. Nicaise; S. I. Repin Functional a posteriori error estimates for the reaction-convection-diffusion problem, Journal of Mathematical Sciences, Volume 152 (2008) no. 5, p. 690 | DOI:10.1007/s10958-008-9092-5
  • S. Repin; R. Stenberg A posteriori error estimates for the generalized Stokes problem, Journal of Mathematical Sciences (New York), Volume 142 (2007) no. 1, pp. 1828-1843 | DOI:10.1007/s10958-007-0092-7 | Zbl:1202.65150

Cité par 33 documents. Sources : Crossref, zbMATH

Commentaires - Politique