Comptes Rendus
Partial Differential Equations/Numerical Analysis
Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the 1d wave equation
[Solutions localisées et mécanismes de filtrage pour les approximations de Galerkin discontinues de l'équation des ondes]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1087-1092.

On développe une analyse de Fourier complète de l'équation des ondes unidimensionnelle semi-discrétisée en espace obtenue dans l'approximation numérique de l'équation des ondes par une méthode de Galerkin discontinue (GD) P1 dans un maillage uniforme. On met en évidence la coexistence de deux composantes dans le système numérique : une physique, et une parasite liée aux discontinuités que la solution numérique permet. Chaque relation de dispersion contient des points critiques où la vitesse de groupe correspondante s'annule. En suivant les constructions faites antérieurement pour le schéma en différences finies, on construit d'une manière rigoureuse des paquets d'ondes qui se propagent à une vitesse arbitrairement petite, concentrés soit sur l'une, soit sur l'autre de ces deux composantes. On développe aussi des mécanismes de filtrage permettant de récupérer les propriétés de propagation des solutions de l'équation continue. Enfin, on présente une application à l'approximation numérique des problèmes de contrôle.

We perform a complete Fourier analysis of the semi-discrete 1d wave equation obtained through a P1 discontinuous Galerkin (DG) approximation of the continuous wave equation on an uniform grid. The resulting system exhibits the interaction of two types of components: a physical one and a spurious one, related to the possible discontinuities that the numerical solution allows. Each dispersion relation contains critical points where the corresponding group velocity vanishes. Following previous constructions, we rigorously build wave packets with arbitrarily small velocity of propagation concentrated either on the physical or on the spurious component. We also develop filtering mechanisms aimed at recovering the uniform velocity of propagation of the continuous solutions. Finally, some applications to numerical approximation issues of control problems are also presented.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.09.012

Aurora Marica 1 ; Enrique Zuazua 1, 2

1 BCAM – Basque Center for Applied Mathematics, Bizkaia Technology Park 500, 48160 Derio, Basque Country, Spain
2 Ikerbasque, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Basque Country, Spain
@article{CRMATH_2010__348_19-20_1087_0,
     author = {Aurora Marica and Enrique Zuazua},
     title = {Localized solutions and filtering mechanisms for the discontinuous {Galerkin} semi-discretizations of the $ 1-d$ wave equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1087--1092},
     publisher = {Elsevier},
     volume = {348},
     number = {19-20},
     year = {2010},
     doi = {10.1016/j.crma.2010.09.012},
     language = {en},
}
TY  - JOUR
AU  - Aurora Marica
AU  - Enrique Zuazua
TI  - Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the $ 1-d$ wave equation
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1087
EP  - 1092
VL  - 348
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2010.09.012
LA  - en
ID  - CRMATH_2010__348_19-20_1087_0
ER  - 
%0 Journal Article
%A Aurora Marica
%A Enrique Zuazua
%T Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the $ 1-d$ wave equation
%J Comptes Rendus. Mathématique
%D 2010
%P 1087-1092
%V 348
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2010.09.012
%G en
%F CRMATH_2010__348_19-20_1087_0
Aurora Marica; Enrique Zuazua. Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the $ 1-d$ wave equation. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1087-1092. doi : 10.1016/j.crma.2010.09.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.012/

[1] M. Ainsworth Dispersive behaviour of high order discontinuous Galerkin finite element method, Journal of Computational Physics, Volume 198 (2004) no. 1, pp. 106-130

[2] P. Antonietti; A. Buffa; I. Perugia Discontinuous Galerkin approximation of the Laplace eigenproblem, Comput. Methods Appl. Mech. Engrg., Volume 195 (2006) no. 25–28, pp. 3483-3505

[3] D.N. Arnold; F. Brezzi; B. Cockburn; L.D. Marini Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., Volume 39 (2002), pp. 1749-1779

[4] S. Ervedoza, E. Zuazua, Propagation, observation and numerical approximation of waves, in preparation.

[5] R. Glowinski Ensuring the well-posedness by analogy; Stokes problem and boundary control for the wave equation, Journal of Computational Physics, Volume 103 (1992) no. 2, pp. 189-221

[6] R. Glowinski; J.-L. Lions; J. He Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach, Encyclopedia of Mathematics and its Applications, vol. 117, Cambridge University Press, 2008

[7] L. Ignat; E. Zuazua Convergence of a multi-grid method for the control of waves, J. Eur. Math. Soc., Volume 11 (2009), pp. 351-391

[8] L. Ignat; E. Zuazua Numerical dispersive schemes for the nonlinear Schrödinger equation, SIAM. J. Numer. Anal., Volume 47 (2009) no. 2, pp. 1366-1390

[9] A. Marica; E. Zuazua Localized solutions for the finite difference semi-discretization of the wave equation, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 11–12, pp. 647-652

[10] E. Zuazua Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures Appl., Volume 70 (1991), pp. 513-529

[11] E. Zuazua Propagation, observation, control and numerical approximations of waves, SIAM Review, Volume 47 (2005) no. 2, pp. 197-243

Cité par Sources :

Commentaires - Politique