[Solutions localisées et mécanismes de filtrage pour les approximations de Galerkin discontinues de l'équation des ondes]
On développe une analyse de Fourier complète de l'équation des ondes unidimensionnelle semi-discrétisée en espace obtenue dans l'approximation numérique de l'équation des ondes par une méthode de Galerkin discontinue (GD)
We perform a complete Fourier analysis of the semi-discrete
Accepté le :
Publié le :
Aurora Marica 1 ; Enrique Zuazua 1, 2
@article{CRMATH_2010__348_19-20_1087_0, author = {Aurora Marica and Enrique Zuazua}, title = {Localized solutions and filtering mechanisms for the discontinuous {Galerkin} semi-discretizations of the $ 1-d$ wave equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {1087--1092}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.09.012}, language = {en}, }
TY - JOUR AU - Aurora Marica AU - Enrique Zuazua TI - Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the $ 1-d$ wave equation JO - Comptes Rendus. Mathématique PY - 2010 SP - 1087 EP - 1092 VL - 348 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2010.09.012 LA - en ID - CRMATH_2010__348_19-20_1087_0 ER -
%0 Journal Article %A Aurora Marica %A Enrique Zuazua %T Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the $ 1-d$ wave equation %J Comptes Rendus. Mathématique %D 2010 %P 1087-1092 %V 348 %N 19-20 %I Elsevier %R 10.1016/j.crma.2010.09.012 %G en %F CRMATH_2010__348_19-20_1087_0
Aurora Marica; Enrique Zuazua. Localized solutions and filtering mechanisms for the discontinuous Galerkin semi-discretizations of the $ 1-d$ wave equation. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1087-1092. doi : 10.1016/j.crma.2010.09.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.012/
[1] Dispersive behaviour of high order discontinuous Galerkin finite element method, Journal of Computational Physics, Volume 198 (2004) no. 1, pp. 106-130
[2] Discontinuous Galerkin approximation of the Laplace eigenproblem, Comput. Methods Appl. Mech. Engrg., Volume 195 (2006) no. 25–28, pp. 3483-3505
[3] Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., Volume 39 (2002), pp. 1749-1779
[4] S. Ervedoza, E. Zuazua, Propagation, observation and numerical approximation of waves, in preparation.
[5] Ensuring the well-posedness by analogy; Stokes problem and boundary control for the wave equation, Journal of Computational Physics, Volume 103 (1992) no. 2, pp. 189-221
[6] Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach, Encyclopedia of Mathematics and its Applications, vol. 117, Cambridge University Press, 2008
[7] Convergence of a multi-grid method for the control of waves, J. Eur. Math. Soc., Volume 11 (2009), pp. 351-391
[8] Numerical dispersive schemes for the nonlinear Schrödinger equation, SIAM. J. Numer. Anal., Volume 47 (2009) no. 2, pp. 1366-1390
[9] Localized solutions for the finite difference semi-discretization of the wave equation, C. R. Acad. Sci. Paris, Ser. I, Volume 348 (2010) no. 11–12, pp. 647-652
[10] Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures Appl., Volume 70 (1991), pp. 513-529
[11] Propagation, observation, control and numerical approximations of waves, SIAM Review, Volume 47 (2005) no. 2, pp. 197-243
Cité par Sources :
Commentaires - Politique