[Les puissances extérieures de la représentation géométrique dans la cohomologie des fibres de Springer]
Soit la cohomologie de la fibre de Springer pour l'élément nilpotent e de l'algèbre de Lie simple . Soit la i-ème puissance extérieure de la représentation géométrique de W. Nous trouvons les degrés des contributions de à la représentation graduée , si e est régulier dans une sous-algèbre de Levi et satisfait à une autre condition qui est vraie si est de type A, B, ou C. Ce résultat démontre partiellement une conjecture de Lehrer et Shoji.
Let be the cohomology of the Springer fibre for the nilpotent element e in a simple Lie algebra . Let denote the ith exterior power of the reflection representation of W. We determine the degrees in which occurs in the graded representation , under the assumption that e is regular in a Levi subalgebra and satisfies a certain extra condition which holds automatically if is of type A, B, or C. This partially verifies a conjecture of Lehrer and Shoji.
Accepté le :
Publié le :
Anthony Henderson 1
@article{CRMATH_2010__348_19-20_1055_0, author = {Anthony Henderson}, title = {Exterior powers of the reflection representation in the cohomology of {Springer} fibres}, journal = {Comptes Rendus. Math\'ematique}, pages = {1055--1058}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.09.015}, language = {en}, }
TY - JOUR AU - Anthony Henderson TI - Exterior powers of the reflection representation in the cohomology of Springer fibres JO - Comptes Rendus. Mathématique PY - 2010 SP - 1055 EP - 1058 VL - 348 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2010.09.015 LA - en ID - CRMATH_2010__348_19-20_1055_0 ER -
Anthony Henderson. Exterior powers of the reflection representation in the cohomology of Springer fibres. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1055-1058. doi : 10.1016/j.crma.2010.09.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.015/
[1] A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math., Volume 41 (1977), pp. 113-127
[2] Conjugacy Classes in Semisimple Algebraic Groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, Rhode Island, 1995
[3] On flag varieties, hyperplane complements and Springer representations of Weyl groups, J. Austral. Math. Soc. Ser. A, Volume 49 (1990) no. 3, pp. 449-485
[4] An induction theorem for Springer's representations, Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Kinokuniya, 2004, pp. 253-259
[5] Geometry of orbits and Springer correspondence, Orbites unipotentes et représentations, I, Astérisque, vol. 168, Soc. Math. de France, Paris, 1988, pp. 61-140
[6] Invariants of finite reflection groups, Nagoya Math. J., Volume 22 (1963), pp. 57-64
[7] Exterior powers of the reflection representation in Springer theory | arXiv
[8] The adjoint representation in rings of functions, Represent. Theory, Volume 1 (1997), pp. 182-189
[9] On the reflection representation in Springer's theory, Comment. Math. Helv., Volume 66 (1991) no. 4, pp. 618-636
[10] Invariants of finite reflection groups, Canad. J. Math., Volume 12 (1960), pp. 616-618
Cité par Sources :
Commentaires - Politique