[Les puissances extérieures de la représentation géométrique dans la cohomologie des fibres de Springer]
Soit
Let
Accepté le :
Publié le :
Anthony Henderson 1
@article{CRMATH_2010__348_19-20_1055_0, author = {Anthony Henderson}, title = {Exterior powers of the reflection representation in the cohomology of {Springer} fibres}, journal = {Comptes Rendus. Math\'ematique}, pages = {1055--1058}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.09.015}, language = {en}, }
TY - JOUR AU - Anthony Henderson TI - Exterior powers of the reflection representation in the cohomology of Springer fibres JO - Comptes Rendus. Mathématique PY - 2010 SP - 1055 EP - 1058 VL - 348 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2010.09.015 LA - en ID - CRMATH_2010__348_19-20_1055_0 ER -
Anthony Henderson. Exterior powers of the reflection representation in the cohomology of Springer fibres. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1055-1058. doi : 10.1016/j.crma.2010.09.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.015/
[1] A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math., Volume 41 (1977), pp. 113-127
[2] Conjugacy Classes in Semisimple Algebraic Groups, Mathematical Surveys and Monographs, vol. 43, American Mathematical Society, Providence, Rhode Island, 1995
[3] On flag varieties, hyperplane complements and Springer representations of Weyl groups, J. Austral. Math. Soc. Ser. A, Volume 49 (1990) no. 3, pp. 449-485
[4] An induction theorem for Springer's representations, Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., vol. 40, Math. Soc. Japan, Kinokuniya, 2004, pp. 253-259
[5] Geometry of orbits and Springer correspondence, Orbites unipotentes et représentations, I, Astérisque, vol. 168, Soc. Math. de France, Paris, 1988, pp. 61-140
[6] Invariants of finite reflection groups, Nagoya Math. J., Volume 22 (1963), pp. 57-64
[7] Exterior powers of the reflection representation in Springer theory | arXiv
[8] The adjoint representation in rings of functions, Represent. Theory, Volume 1 (1997), pp. 182-189
[9] On the reflection representation in Springer's theory, Comment. Math. Helv., Volume 66 (1991) no. 4, pp. 618-636
[10] Invariants of finite reflection groups, Canad. J. Math., Volume 12 (1960), pp. 616-618
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier