Comptes Rendus
Partial Differential Equations
Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity
[Existence d'ondes solitaires pour le système couplé de Schrödinger–KdV avec non linearité cubique]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1079-1082.

Nous prouvons dans cette Note l'existence d'une famille infinie d'ondes solitaires régulières pour le système couplé de Schrödinger–Korteweg–de Vries, qui décroissent exponentiellement a l'infini.

We prove in this Note the existence of an infinite family of smooth positive bound states for the coupled Schrödinger–Korteweg–de Vries system, which decays exponentially at infinity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.09.018

João-Paulo Dias 1 ; Mário Figueira 1 ; Filipe Oliveira 2

1 CMAF/UL and FCUL, Av. Prof. Gama Pinto, 2, 1649-003 Lisboa, Portugal
2 Dep. Matemática, FCT/UNL, Monte da Caparica, Portugal
@article{CRMATH_2010__348_19-20_1079_0,
     author = {Jo\~ao-Paulo Dias and M\'ario Figueira and Filipe Oliveira},
     title = {Existence of bound states for the coupled {Schr\"odinger{\textendash}KdV} system with cubic nonlinearity},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1079--1082},
     publisher = {Elsevier},
     volume = {348},
     number = {19-20},
     year = {2010},
     doi = {10.1016/j.crma.2010.09.018},
     language = {en},
}
TY  - JOUR
AU  - João-Paulo Dias
AU  - Mário Figueira
AU  - Filipe Oliveira
TI  - Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1079
EP  - 1082
VL  - 348
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2010.09.018
LA  - en
ID  - CRMATH_2010__348_19-20_1079_0
ER  - 
%0 Journal Article
%A João-Paulo Dias
%A Mário Figueira
%A Filipe Oliveira
%T Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity
%J Comptes Rendus. Mathématique
%D 2010
%P 1079-1082
%V 348
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2010.09.018
%G en
%F CRMATH_2010__348_19-20_1079_0
João-Paulo Dias; Mário Figueira; Filipe Oliveira. Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1079-1082. doi : 10.1016/j.crma.2010.09.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.018/

[1] J. Albert; J. Angulo Pava Existence and stability of ground-state solutions of a Schrödinger–KdV system, Proc. Roy. Soc. Edinburgh Sect. A, Volume 133 (2003), pp. 987-1029

[2] A. Ambrosetti; E. Colorado Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 453-458

[3] J. Angulo Pava; J.F. Montenegro Existence and evenness of solitary-wave solutions for an equation of short and long dispersive waves, Nonlinearity, Volume 13 (2000), pp. 1595-1611

[4] T. Cazenave An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, vol. 22, Instituto de Matemática, UFRJ, Rio de Janeiro, 1989

[5] A.J. Corcho; F. Linares Well-posedness for the Schrödinger–Korteweg–de Vries system, Trans. Amer. Math. Soc., Volume 359 (2007), pp. 4089-4106

[6] P.L. Lions The concentration-compactness principle in the calculus of variations, Part 1, Ann. Inst. H. Poincaré, Volume 1 (1984), pp. 109-145

[7] P.L. Lions The concentration-compactness principle in the calculus of variations, Part 2, Ann. Inst. H. Poincaré, Volume 1 (1984), pp. 223-283

[8] M. Ohta Stability of stationary states for the coupled Klein–Gordon–Schrödinger equations, Nonlinear Anal. TMA, Volume 27 (1996), pp. 455-461

  • Yuyu He; Hongtao Chen; Bolin Chen Physical invariants-preserving compact difference schemes for the coupled nonlinear Schrödinger-KdV equations, Applied Numerical Mathematics, Volume 204 (2024), p. 162 | DOI:10.1016/j.apnum.2024.06.007
  • Qian Gao; Qun Wang; Xiaojun Chang Normalized ground state solutions of Schrödinger-KdV system in R3, Zeitschrift für angewandte Mathematik und Physik, Volume 75 (2024) no. 6 | DOI:10.1007/s00033-024-02330-8
  • Jun Wang; Junping Shi Standing Waves of Coupled Schrödinger Equations with Quadratic Interactions from Raman Amplification in a Plasma, Annales Henri Poincaré, Volume 24 (2023) no. 6, p. 1923 | DOI:10.1007/s00023-022-01251-4
  • Fei-Fei Liang; Xing-Ping Wu; Chun-Lei Tang Ground State Solution for Schrödinger–KdV System with Periodic Potential, Qualitative Theory of Dynamical Systems, Volume 22 (2023) no. 1 | DOI:10.1007/s12346-023-00741-y
  • Yuyu He; Xiaofeng Wang High-order compact finite difference scheme with two conserving invariants for the coupled nonlinear Schrödinger–KdV equations, Journal of Difference Equations and Applications, Volume 28 (2022) no. 7, p. 900 | DOI:10.1080/10236198.2022.2091439
  • Qiuping Geng; Jun Wang; Jing Yang Existence of multiple nontrivial solutions of the nonlinear Schrödinger-Korteweg-de Vries type system, Advances in Nonlinear Analysis, Volume 11 (2021) no. 1, p. 636 | DOI:10.1515/anona-2021-0214
  • Felipe Linares; Argenis J. Mendez On Long Time Behavior of Solutions of the Schrödinger–Korteweg–de Vries System, SIAM Journal on Mathematical Analysis, Volume 53 (2021) no. 4, p. 3838 | DOI:10.1137/20m137553x
  • Chunhua Wang; Jing Zhou Infinitely Many Solitary Waves Due to the Second-Harmonic Generation in Quadratic Media, Acta Mathematica Scientia, Volume 40 (2020) no. 1, p. 16 | DOI:10.1007/s10473-020-0102-3
  • Wenjing Bi; Chunlei Tang Ground state solutions for a non-autonomous nonlinear Schrödinger-KdV system, Frontiers of Mathematics in China, Volume 15 (2020) no. 5, p. 851 | DOI:10.1007/s11464-020-0867-4
  • Qiuping Geng; Mian Liao; Jun Wang; Lu Xiao Existence and bifurcation of nontrivial solutions for the coupled nonlinear Schrödinger–Korteweg–de Vries system, Zeitschrift für angewandte Mathematik und Physik, Volume 71 (2020) no. 1 | DOI:10.1007/s00033-020-1256-2
  • Eduardo Colorado On the existence of bound and ground states for some coupled nonlinear Schrödinger–Korteweg–de Vries equations, Advances in Nonlinear Analysis, Volume 6 (2017) no. 4, p. 407 | DOI:10.1515/anona-2015-0181
  • P. Álvarez-Caudevilla; Eduardo Colorado; Rasiel Fabelo A higher order system of some coupled nonlinear Schrödinger and Korteweg-de Vries equations, Journal of Mathematical Physics, Volume 58 (2017) no. 11 | DOI:10.1063/1.5010682
  • Chungen Liu; Youquan Zheng On soliton solutions to a class of Schrödinger-K𝐝V systems, Proceedings of the American Mathematical Society, Volume 141 (2013) no. 10, p. 3477 | DOI:10.1090/s0002-9939-2013-11629-1
  • Paulo Amorim; Mário Figueira Convergence of a numerical scheme for a coupled Schrödinger–KdV system, Revista Matemática Complutense, Volume 26 (2013) no. 2, p. 409 | DOI:10.1007/s13163-012-0097-8

Cité par 14 documents. Sources : Crossref

Commentaires - Politique