[Existence d'ondes solitaires pour le système couplé de Schrödinger–KdV avec non linearité cubique]
Nous prouvons dans cette Note l'existence d'une famille infinie d'ondes solitaires régulières pour le système couplé de Schrödinger–Korteweg–de Vries, qui décroissent exponentiellement a l'infini.
We prove in this Note the existence of an infinite family of smooth positive bound states for the coupled Schrödinger–Korteweg–de Vries system, which decays exponentially at infinity.
Accepté le :
Publié le :
João-Paulo Dias 1 ; Mário Figueira 1 ; Filipe Oliveira 2
@article{CRMATH_2010__348_19-20_1079_0, author = {Jo\~ao-Paulo Dias and M\'ario Figueira and Filipe Oliveira}, title = {Existence of bound states for the coupled {Schr\"odinger{\textendash}KdV} system with cubic nonlinearity}, journal = {Comptes Rendus. Math\'ematique}, pages = {1079--1082}, publisher = {Elsevier}, volume = {348}, number = {19-20}, year = {2010}, doi = {10.1016/j.crma.2010.09.018}, language = {en}, }
TY - JOUR AU - João-Paulo Dias AU - Mário Figueira AU - Filipe Oliveira TI - Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity JO - Comptes Rendus. Mathématique PY - 2010 SP - 1079 EP - 1082 VL - 348 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2010.09.018 LA - en ID - CRMATH_2010__348_19-20_1079_0 ER -
%0 Journal Article %A João-Paulo Dias %A Mário Figueira %A Filipe Oliveira %T Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity %J Comptes Rendus. Mathématique %D 2010 %P 1079-1082 %V 348 %N 19-20 %I Elsevier %R 10.1016/j.crma.2010.09.018 %G en %F CRMATH_2010__348_19-20_1079_0
João-Paulo Dias; Mário Figueira; Filipe Oliveira. Existence of bound states for the coupled Schrödinger–KdV system with cubic nonlinearity. Comptes Rendus. Mathématique, Volume 348 (2010) no. 19-20, pp. 1079-1082. doi : 10.1016/j.crma.2010.09.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.09.018/
[1] Existence and stability of ground-state solutions of a Schrödinger–KdV system, Proc. Roy. Soc. Edinburgh Sect. A, Volume 133 (2003), pp. 987-1029
[2] Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Acad. Sci. Paris, Ser. I, Volume 342 (2006), pp. 453-458
[3] Existence and evenness of solitary-wave solutions for an equation of short and long dispersive waves, Nonlinearity, Volume 13 (2000), pp. 1595-1611
[4] An Introduction to Nonlinear Schrödinger Equations, Textos de Métodos Matemáticos, vol. 22, Instituto de Matemática, UFRJ, Rio de Janeiro, 1989
[5] Well-posedness for the Schrödinger–Korteweg–de Vries system, Trans. Amer. Math. Soc., Volume 359 (2007), pp. 4089-4106
[6] The concentration-compactness principle in the calculus of variations, Part 1, Ann. Inst. H. Poincaré, Volume 1 (1984), pp. 109-145
[7] The concentration-compactness principle in the calculus of variations, Part 2, Ann. Inst. H. Poincaré, Volume 1 (1984), pp. 223-283
[8] Stability of stationary states for the coupled Klein–Gordon–Schrödinger equations, Nonlinear Anal. TMA, Volume 27 (1996), pp. 455-461
Cité par Sources :
Commentaires - Politique