[Invariant d'Alexander pour les nœuds toriques]
Accepté le :
Publié le :
Jérôme Dubois 1 ; Christian Wegner 2
@article{CRMATH_2010__348_21-22_1185_0, author = {J\'er\^ome Dubois and Christian Wegner}, title = {$ {L}^{2}${-Alexander} invariant for torus knots}, journal = {Comptes Rendus. Math\'ematique}, pages = {1185--1189}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.008}, language = {en}, }
Jérôme Dubois; Christian Wegner. $ {L}^{2}$-Alexander invariant for torus knots. Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, pp. 1185-1189. doi : 10.1016/j.crma.2010.10.008. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.008/
[1] Knots, de Gruyter Studies in Mathematics, vol. 5, Walter de Gruyter, 2003
[2] Analytic torsion and the heat equation, Ann. Math., Volume 109 (1979), pp. 259-322
[3] J. Dubois, C. Wegner, -Alexander invariant for knots, in preparation.
[4] A survey of twisted Alexander polynomials, 2009 (preprint) | arXiv
[5] An -Alexander invariant for knots, Commun. Contemp. Math., Volume 8 (2006) no. 2, pp. 167-187
[6] An -Alexander–Conway invariant for knots and the volume conjecture, Differential Geometry and Physics, Nankai Tracts Math., vol. 10, World Sci. Publ., Hackensack, NJ, 2006, pp. 303-312
[7] -Invariants: Theory and Applications to Geometry and K-Theory, Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol. 44, Springer-Verlag, Berlin, 2002
[8] -torsion of hyperbolic manifolds of finite volume, Geometric and Functional Analysis, Volume 9 (1999), pp. 518-567
[9] A duality theorem for Reidemeister torsion, Ann. of Math., Volume 76 (1962), pp. 134-147
[10] Analytic torsion and R-torsion of Riemannian manifolds, Adv. in Math., Volume 28 (1978), pp. 233-305
Cité par Sources :
Commentaires - Politique