Comptes Rendus
Topology
On a conjecture of Dunfield, Friedl and Jackson
[Sur une conjecture de Dunfield, Friedl et Jackson]
Comptes Rendus. Mathématique, Volume 350 (2012) no. 19-20, pp. 921-924.

Dans cette courte Note, nous montrons que le polynome Alexander tordu a associe a une representation parabolique detecte genre et fibering des noeuds de la torsion. Comme un corollaire, une conjecture de Dunfield, Friedl et Jackson est prouvee pour les noeuds de la torsion hyperboliques.

In this short Note, we show that the twisted Alexander polynomial associated to a parabolic SL(2,C)-representation detects genus and fibering of the twist knots. As a corollary, a conjecture of Dunfield, Friedl and Jackson is proved for the hyperbolic twist knots.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2012.10.013

Takayuki Morifuji 1

1 Department of Mathematics, Hiyoshi Campus, Keio University, Yokohama 223-8521, Japan
@article{CRMATH_2012__350_19-20_921_0,
     author = {Takayuki Morifuji},
     title = {On a conjecture of {Dunfield,} {Friedl} and {Jackson}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {921--924},
     publisher = {Elsevier},
     volume = {350},
     number = {19-20},
     year = {2012},
     doi = {10.1016/j.crma.2012.10.013},
     language = {en},
}
TY  - JOUR
AU  - Takayuki Morifuji
TI  - On a conjecture of Dunfield, Friedl and Jackson
JO  - Comptes Rendus. Mathématique
PY  - 2012
SP  - 921
EP  - 924
VL  - 350
IS  - 19-20
PB  - Elsevier
DO  - 10.1016/j.crma.2012.10.013
LA  - en
ID  - CRMATH_2012__350_19-20_921_0
ER  - 
%0 Journal Article
%A Takayuki Morifuji
%T On a conjecture of Dunfield, Friedl and Jackson
%J Comptes Rendus. Mathématique
%D 2012
%P 921-924
%V 350
%N 19-20
%I Elsevier
%R 10.1016/j.crma.2012.10.013
%G en
%F CRMATH_2012__350_19-20_921_0
Takayuki Morifuji. On a conjecture of Dunfield, Friedl and Jackson. Comptes Rendus. Mathématique, Volume 350 (2012) no. 19-20, pp. 921-924. doi : 10.1016/j.crma.2012.10.013. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.10.013/

[1] J.C. Cha Fibred knots and twisted Alexander invariants, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 4187-4200

[2] R. Crowell Genus of alternating link types, Ann. of Math., Volume 69 (1959) no. 2, pp. 258-275

[3] N. Dunfield, S. Friedl, N. Jackson, Twisted Alexander polynomials of hyperbolic knots, Experiment. Math., in press, . | arXiv

[4] S. Friedl; T. Kim The Thurston norm, fibered manifolds and twisted Alexander polynomials, Topology, Volume 45 (2006), pp. 929-953

[5] S. Friedl; S. Vidussi Twisted Alexander polynomials detect fibered 3-manifolds, Ann. of Math., Volume 173 (2011), pp. 1587-1643

[6] H. Goda; T. Kitano; T. Morifuji Reidemeister torsion, twisted Alexander polynomial and fibered knots, Comment. Math. Helv., Volume 80 (2005), pp. 51-61

[7] J. Hoste; P.D. Shanahan Trace fields of twist knots, J. Knot Theory Ramifications, Volume 10 (2001), pp. 625-639

[8] T. Kim; T. Morifuji Twisted Alexander polynomials and character varieties of 2-bridge knot groups, Internat. J. Math., Volume 23 (2012), p. 1250022 (24 pp)

[9] T. Kitano; T. Morifuji Divisibility of twisted Alexander polynomials and fibered knots, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Volume 4 (2005), pp. 179-186

[10] X.S. Lin Representations of knot groups and twisted Alexander polynomials, Acta Math. Sin. (Engl. Ser.), Volume 17 (2001), pp. 361-380

[11] T. Morifuji Twisted Alexander polynomials of twist knots for nonabelian representations, Bull. Sci. Math., Volume 132 (2008), pp. 439-453

[12] K. Murasugi On the genus of the alternating knot I, J. Math. Soc. Japan, Volume 10 (1958), pp. 94-105

[13] K. Murasugi On the genus of the alternating knot II, J. Math. Soc. Japan, Volume 10 (1958), pp. 235-248

[14] K. Murasugi On a certain subgroup of the group of an alternating link, Amer. J. Math., Volume 85 (1963), pp. 544-550

[15] R. Riley Parabolic representations of knot groups, I, Proc. London Math. Soc. (3), Volume 24 (1972), pp. 217-242

[16] M. Wada Twisted Alexander polynomial for finitely presentable groups, Topology, Volume 33 (1994), pp. 241-256

Cité par Sources :

Commentaires - Politique