[Une borne de type moyenne harmonique pour le trou spectral du laplacien sur les variétés riemanniennes]
La plupart des minorants connus pour le trou spectral du laplacien faisant intervenir la courbure de Ricci sont basés sur l'infimum de cette courbure, et peuvent être de piètre qualité si la courbure de Ricci est élevée partout sauf sur un petit sous-ensemble sur lequel elle est faible. On montre ici que la moyenne harmonique de la courbure de Ricci est un minorant du trou spectral du laplacien, ce qui résout partiellement le problème (malheureusement, il faut supposer que la courbure de Ricci est partout positive ou nulle).
Most known lower bounds on the spectral gap of the Laplacian using Ricci curvature are based on the infimum of the Ricci curvature, and can be really poor when the Ricci curvature is large everywhere but on a small subset on which it is small. Here we show that the harmonic mean of the Ricci curvature is a lower bound on the spectral gap of the Laplacian, which partially solves the problem (unfortunately, we have to assume that the Ricci curvature is everywhere nonnegative).
Accepté le :
Publié le :
Laurent Veysseire 1
@article{CRMATH_2010__348_23-24_1319_0, author = {Laurent Veysseire}, title = {A harmonic mean bound for the spectral gap of the {Laplacian} on {Riemannian} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {1319--1322}, publisher = {Elsevier}, volume = {348}, number = {23-24}, year = {2010}, doi = {10.1016/j.crma.2010.10.015}, language = {en}, }
Laurent Veysseire. A harmonic mean bound for the spectral gap of the Laplacian on Riemannian manifolds. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1319-1322. doi : 10.1016/j.crma.2010.10.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.015/
[1] Finiteness of and geometric inequalities in almost positive Ricci curvature, Ann. Sci. Ec. Norm. Super., Volume 40 (July–August 2007)
[2] Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math., Volume 299 (1984) no. 15
[3] Diffusions hypercontractives, Séminaire de probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985
[4] A Panoramic View of Riemannian Geometry, Springer-Verlag, 2003
[5] General formula for lower bound of the first eigenvalue on Riemannian manifolds, Sci. Sin. (1997)
[6] Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1977
[7] Géométrie des groupes de transformations, Dunod, 1958
Cité par Sources :
Commentaires - Politique