We show that the main theorem of Morales, Ramis and Simo (2007) [6] about Galoisian obstructions to meromorphic integrability of Hamiltonian systems can be naturally extended to the non-Hamiltonian case. Namely, if a dynamical system is meromorphically integrable in the non-Hamiltonian sense, then the differential Galois groups of the variational equations (of any order) along its solutions must be virtually Abelian.
Nous montrons la version non-hamiltonienne du théorème de Morales, Ramis et Simo (2007) [6]. Plus précisément, si un système dynamique est méromorphiquement intégrable au sens non-hamiltonien, alors tous les groupes de Galois différentiels des équations variationelles d'ordre arbitraire le long de ses solutions doivent être virtuellement abéliens.
Accepted:
Published online:
Michaël Ayoul 1; Nguyen Tien Zung 1
@article{CRMATH_2010__348_23-24_1323_0, author = {Micha\"el Ayoul and Nguyen Tien Zung}, title = {Galoisian obstructions to {non-Hamiltonian} integrability}, journal = {Comptes Rendus. Math\'ematique}, pages = {1323--1326}, publisher = {Elsevier}, volume = {348}, number = {23-24}, year = {2010}, doi = {10.1016/j.crma.2010.10.024}, language = {en}, }
Michaël Ayoul; Nguyen Tien Zung. Galoisian obstructions to non-Hamiltonian integrability. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1323-1326. doi : 10.1016/j.crma.2010.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.024/
[1] What is a completely integrable nonholonomic dynamical system?, Rep. Math. Phys., Volume 44 (1999) no. 1–2, pp. 29-35
[2] Extended integrability and bi-hamiltonian systems, Comm. Math. Phys., Volume 196 (1998) no. 1, pp. 19-51
[3] Differential Galois obstructions for non-commutative integrability, Phys. Lett. A, Volume 372 (2008) no. 33, pp. 5431-5435
[4] Necessary conditions for super-integrability of Hamiltonian systems, Phys. Lett. A, Volume 372 (2008) no. 34, pp. 5581-5587
[5] Galoisian obstructions to integrability of Hamiltonian systems, I and II, Methods Appl. Anal., Volume 8 (2001) no. 1, pp. 33-111
[6] Integrability of Hamiltonian systems and differential Galois groups of higher order variational equations, Ann. Sci. Ec. Norm. Super., Volume 40 (2007) no. 6, pp. 845-884
[7] Singular complete integrability, Publ. Math. Inst. Hautes Etudes Sci., Volume 91 (2000), pp. 134-210
[8] Convergence versus integrability in Poincaré–Dulac normal forms, Math. Res. Lett. (2002)
[9] Torus actions and integrable systems (A.V. Bolsinov; A.T. Fomenko; A.A. Oshemkov, eds.), Topological Methods in the Theory of Integrable Systems, Cambridge Sci. Publ., 2006, pp. 289-328 | arXiv
Cited by Sources:
Comments - Policy