In this Note we introduce BV functions in a Gelfand triple, which is an extension of BV functions in Ambrosio et al., preprint [1], by using Dirichlet form theory. By this definition, we can consider the stochastic reflection problem associated with a self-adjoint operator A and a cylindrical Wiener process on a convex set Γ. We prove the existence and uniqueness of a strong solution of this problem when Γ is a regular convex set. The result is also extended to the non-symmetric case. Finally, we extend our results to the case when , where , .
Dans cette Note, on introduit des fonctions BV dans un triplet de Gelfand qui est une extension de fonctions BV dans Ambrosio et al., preprint [1] en utilizant la forme de Dirichlet. Par cette définition, on peut considérer le problème de réflexion stochastique associé à un opérateur auto-adjoint A et un processus de Wiener cylindrique sur un ensemble convexe Γ. Nous démontrons l'existence et l'unicité d'une solution forte de ce problème si Γ et un ensemble convexe régulier. Le résultat est aussi étendu au cas non symétrique. Finalement, nous utilisons les fonctions BV dans le cas , où , .
Accepted:
Published online:
Michael Röckner 1; Rongchan Zhu 2; Xiangchan Zhu 3
@article{CRMATH_2010__348_21-22_1175_0, author = {Michael R\"ockner and Rongchan Zhu and Xiangchan Zhu}, title = {BV functions in a {Gelfand} triple and the stochastic reflection problem on a convex set of a {Hilbert} space}, journal = {Comptes Rendus. Math\'ematique}, pages = {1175--1178}, publisher = {Elsevier}, volume = {348}, number = {21-22}, year = {2010}, doi = {10.1016/j.crma.2010.10.018}, language = {en}, }
TY - JOUR AU - Michael Röckner AU - Rongchan Zhu AU - Xiangchan Zhu TI - BV functions in a Gelfand triple and the stochastic reflection problem on a convex set of a Hilbert space JO - Comptes Rendus. Mathématique PY - 2010 SP - 1175 EP - 1178 VL - 348 IS - 21-22 PB - Elsevier DO - 10.1016/j.crma.2010.10.018 LA - en ID - CRMATH_2010__348_21-22_1175_0 ER -
%0 Journal Article %A Michael Röckner %A Rongchan Zhu %A Xiangchan Zhu %T BV functions in a Gelfand triple and the stochastic reflection problem on a convex set of a Hilbert space %J Comptes Rendus. Mathématique %D 2010 %P 1175-1178 %V 348 %N 21-22 %I Elsevier %R 10.1016/j.crma.2010.10.018 %G en %F CRMATH_2010__348_21-22_1175_0
Michael Röckner; Rongchan Zhu; Xiangchan Zhu. BV functions in a Gelfand triple and the stochastic reflection problem on a convex set of a Hilbert space. Comptes Rendus. Mathématique, Volume 348 (2010) no. 21-22, pp. 1175-1178. doi : 10.1016/j.crma.2010.10.018. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.018/
[1] L. Ambrosio, G. Da Prato, D. Pallara, BV functions in a Hilbert space with respect to a Gaussian measure, preprint.
[2] Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert spaces, The Annals of Probability, Volume 4 (2009), pp. 1427-1458
[3] BV functions and distorted Ornstein–Uhlenbecl processes over the abstract Wiener space, Journals of Functional Analysis, Volume 174 (2000), pp. 227-249
[4] On the space of BV functions and a related stochastic calculus in infinite dimensions, Journals of Functional Analysis, Volume 183 (2001), pp. 245-268
[5] Stochastic Analysis, Springer, Berlin, 1997
[6] Introduction to the Theory of (Non-symmetric) Dirichlet Forms, Springer-Verlag, Berlin/Heidelberg/New York, 1992
[7] Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Dekker, New York, 1991
[8] Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection, Probability Theory Related Fields, Volume 123 (2002), pp. 579-600
Cited by Sources:
☆ Research supported by 973 project, NSFC, key Lab of CAS, the DFG through IRTG 1132 and CRC 701 and the I. Newton Institute, Cambridge, UK.
Comments - Policy