Comptes Rendus
Dynamical Systems/Mathematical Problems in Mechanics
Galoisian obstructions to non-Hamiltonian integrability
[Obstructions galoisiennes à l'intégrabilité non-hamiltonien]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1323-1326.

Nous montrons la version non-hamiltonienne du théorème de Morales, Ramis et Simo (2007) [6]. Plus précisément, si un système dynamique est méromorphiquement intégrable au sens non-hamiltonien, alors tous les groupes de Galois différentiels des équations variationelles d'ordre arbitraire le long de ses solutions doivent être virtuellement abéliens.

We show that the main theorem of Morales, Ramis and Simo (2007) [6] about Galoisian obstructions to meromorphic integrability of Hamiltonian systems can be naturally extended to the non-Hamiltonian case. Namely, if a dynamical system is meromorphically integrable in the non-Hamiltonian sense, then the differential Galois groups of the variational equations (of any order) along its solutions must be virtually Abelian.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.024

Michaël Ayoul 1 ; Nguyen Tien Zung 1

1 Institut de mathématiques de Toulouse, UMR 5219 CNRS, université Toulouse III, 118 route de Narbonne, 31000 Toulouse, France
@article{CRMATH_2010__348_23-24_1323_0,
     author = {Micha\"el Ayoul and Nguyen Tien Zung},
     title = {Galoisian obstructions to {non-Hamiltonian} integrability},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1323--1326},
     publisher = {Elsevier},
     volume = {348},
     number = {23-24},
     year = {2010},
     doi = {10.1016/j.crma.2010.10.024},
     language = {en},
}
TY  - JOUR
AU  - Michaël Ayoul
AU  - Nguyen Tien Zung
TI  - Galoisian obstructions to non-Hamiltonian integrability
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1323
EP  - 1326
VL  - 348
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2010.10.024
LA  - en
ID  - CRMATH_2010__348_23-24_1323_0
ER  - 
%0 Journal Article
%A Michaël Ayoul
%A Nguyen Tien Zung
%T Galoisian obstructions to non-Hamiltonian integrability
%J Comptes Rendus. Mathématique
%D 2010
%P 1323-1326
%V 348
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2010.10.024
%G en
%F CRMATH_2010__348_23-24_1323_0
Michaël Ayoul; Nguyen Tien Zung. Galoisian obstructions to non-Hamiltonian integrability. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1323-1326. doi : 10.1016/j.crma.2010.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.024/

[1] L. Bates; R. Cushman What is a completely integrable nonholonomic dynamical system?, Rep. Math. Phys., Volume 44 (1999) no. 1–2, pp. 29-35

[2] O.I. Bogoyavlenskij Extended integrability and bi-hamiltonian systems, Comm. Math. Phys., Volume 196 (1998) no. 1, pp. 19-51

[3] A. Maciejewski; M. Przybylska Differential Galois obstructions for non-commutative integrability, Phys. Lett. A, Volume 372 (2008) no. 33, pp. 5431-5435

[4] A. Maciejewski; M. Przybylska; H. Yoshida Necessary conditions for super-integrability of Hamiltonian systems, Phys. Lett. A, Volume 372 (2008) no. 34, pp. 5581-5587

[5] J. Morales-Ruiz; J.-P. Ramis Galoisian obstructions to integrability of Hamiltonian systems, I and II, Methods Appl. Anal., Volume 8 (2001) no. 1, pp. 33-111

[6] J. Morales-Ruiz; J.-P. Ramis; C. Simo Integrability of Hamiltonian systems and differential Galois groups of higher order variational equations, Ann. Sci. Ec. Norm. Super., Volume 40 (2007) no. 6, pp. 845-884

[7] L. Stolovitch Singular complete integrability, Publ. Math. Inst. Hautes Etudes Sci., Volume 91 (2000), pp. 134-210

[8] N.T. Zung Convergence versus integrability in Poincaré–Dulac normal forms, Math. Res. Lett. (2002)

[9] N.T. Zung Torus actions and integrable systems (A.V. Bolsinov; A.T. Fomenko; A.A. Oshemkov, eds.), Topological Methods in the Theory of Integrable Systems, Cambridge Sci. Publ., 2006, pp. 289-328 | arXiv

  • Kazuyuki Yagasaki Melnikov’s Methods and Nonintegrability of Forced Nonlinear Oscillators, Proceedings of the IUTAM Symposium on Nonlinear Dynamics for Design of Mechanical Systems Across Different Length/Time Scales, Volume 43 (2025), p. 21 | DOI:10.1007/978-3-031-72794-8_2
  • Kaiyin Huang; Shaoyun Shi; Shuangling Yang Integrability and dynamics of the Poisson–Boltzmann equation in simple geometries, Communications in Nonlinear Science and Numerical Simulation, Volume 130 (2024), p. 107668 | DOI:10.1016/j.cnsns.2023.107668
  • KAZUYUKI YAGASAKI Non-integrability of the restricted three-body problem, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 10, p. 3012 | DOI:10.1017/etds.2024.4
  • Jean-Pierre Ramis Epilogue: Stokes Phenomena. Dynamics, Classification Problems and Avatars, Handbook of Geometry and Topology of Singularities VI: Foliations (2024), p. 383 | DOI:10.1007/978-3-031-54172-8_10
  • Shoya Motonaga; Kazuyuki Yagasaki Nonintegrability of forced nonlinear oscillators, Japan Journal of Industrial and Applied Mathematics, Volume 41 (2024) no. 1, p. 151 | DOI:10.1007/s13160-023-00592-9
  • Kazuyuki Yagasaki Semiclassical perturbations of single-degree-of-freedom Hamiltonian systems II: Nonintegrability, Journal of Mathematical Physics, Volume 65 (2024) no. 10 | DOI:10.1063/5.0198422
  • Kazuyuki Yagasaki Nonintegrability of time-periodic perturbations of single-degree-of-freedom Hamiltonian systems near homo- and heteroclinic orbits, Physica D: Nonlinear Phenomena, Volume 464 (2024), p. 134189 | DOI:10.1016/j.physd.2024.134189
  • Shoya Motonaga; Kazuyuki Yagasaki Obstructions to Integrability of Nearly Integrable Dynamical Systems Near Regular Level Sets, Archive for Rational Mechanics and Analysis, Volume 247 (2023) no. 3 | DOI:10.1007/s00205-023-01880-x
  • JAMES DAY PILOT-WAVE HYDRODYNAMICS: QUANTISATION OF PARTIAL INTEGRABILITY FROM A NONLINEAR INTEGRO-DIFFERENTIAL EQUATION OF THE SECOND ORDER, Bulletin of the Australian Mathematical Society, Volume 108 (2023) no. 3, p. 472 | DOI:10.1017/s0004972723000151
  • Kazuyuki Yagasaki Nonintegrability of Dynamical Systems Near Degenerate Equilibria, Communications in Mathematical Physics, Volume 398 (2023) no. 3, p. 1129 | DOI:10.1007/s00220-022-04545-0
  • Kazuyuki Yagasaki Integrability of the Zakharov-Shabat Systems by Quadrature, Communications in Mathematical Physics, Volume 400 (2023) no. 1, p. 315 | DOI:10.1007/s00220-022-04610-8
  • Jia Jiao; Shuangling Yang; Qingjian Zhou; Kaiyin Huang On a simple model for describing convection of the rotating fluid: Integrability, bifurcations and global dynamics, Discrete and Continuous Dynamical Systems - B, Volume 28 (2023) no. 4, p. 2565 | DOI:10.3934/dcdsb.2022181
  • Kazuyuki Yagasaki Nonintegrability of truncated Poincaré-Dulac normal forms of resonance degree two, Journal of Differential Equations, Volume 373 (2023), p. 526 | DOI:10.1016/j.jde.2023.07.017
  • Kazuyuki Yagasaki Nonintegrability of the SEIR epidemic model, Physica D: Nonlinear Phenomena, Volume 453 (2023), p. 133820 | DOI:10.1016/j.physd.2023.133820
  • Kaiyin Huang; Shaoyun Shi; Shuangling Yang Differential Galoisian approach to Jacobi integrability of general analytic dynamical systems and its application, Science China Mathematics, Volume 66 (2023) no. 7, p. 1473 | DOI:10.1007/s11425-021-2015-6
  • Wenlei Li; Shaoyun Shi; Shuangling Yang On integrability of the Nosé–Hoover oscillator and generalized Nosé–Hoover oscillator, International Journal of Geometric Methods in Modern Physics, Volume 19 (2022) no. 08 | DOI:10.1142/s0219887822501171
  • Kazuyuki Yagasaki Nonintegrability of Nearly Integrable Dynamical Systems Near Resonant Periodic Orbits, Journal of Nonlinear Science, Volume 32 (2022) no. 4 | DOI:10.1007/s00332-022-09802-z
  • Shuangling Yang; Shaoyun Shi; Wenlei Li On integrability of the segmented disc dynamo: the effect of mechanical friction, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 3 | DOI:10.1007/s00033-022-01760-6
  • Thomas Dreyfus; Jacques-Arthur Weil Differential Galois Theory and Integration, Anti-Differentiation and the Calculation of Feynman Amplitudes (2021), p. 145 | DOI:10.1007/978-3-030-80219-6_7
  • Shuangling Yang; Jingjia Qu On first integrals of a family of generalized Lorenz-like systems, Chaos, Solitons Fractals, Volume 151 (2021), p. 111141 | DOI:10.1016/j.chaos.2021.111141
  • Xin Zhang; Shuangling Yang Complex dynamics in a quasi-periodic plasma perturbations model, Discrete Continuous Dynamical Systems - B, Volume 26 (2021) no. 8, p. 4013 | DOI:10.3934/dcdsb.2020272
  • Kaiyin Huang; Shaoyun Shi; Wenlei Li Meromorphic and formal first integrals for the Lorenz system, Journal of Nonlinear Mathematical Physics, Volume 25 (2021) no. 1, p. 106 | DOI:10.1080/14029251.2018.1440745
  • Shoya Motonaga; Kazuyuki Yagasaki Persistence of periodic and homoclinic orbits, first integrals and commutative vector fields in dynamical systems, Nonlinearity, Volume 34 (2021) no. 11, p. 7574 | DOI:10.1088/1361-6544/ac24e4
  • W. Szumiński; M. Przybylska Differential Galois integrability obstructions for nonlinear three-dimensional differential systems, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 30 (2020) no. 1 | DOI:10.1063/1.5128587
  • Kaiyin Huang; Shaoyun Shi; Wenlei Li Integrability analysis of the Shimizu–Morioka system, Communications in Nonlinear Science and Numerical Simulation, Volume 84 (2020), p. 105101 | DOI:10.1016/j.cnsns.2019.105101
  • Juan J. Morales-Ruiz A differential Galois approach to path integrals, Journal of Mathematical Physics, Volume 61 (2020) no. 5 | DOI:10.1063/1.5134859
  • Andrzej J. Maciejewski; Maria Przybylska Integrability Analysis of the Stretch–Twist–Fold Flow, Journal of Nonlinear Science, Volume 30 (2020) no. 4, p. 1607 | DOI:10.1007/s00332-020-09619-8
  • Primitivo B Acosta-Humánez; Kazuyuki Yagasaki Nonintegrability of the unfoldings of codimension-two bifurcations, Nonlinearity, Volume 33 (2020) no. 4, p. 1366 | DOI:10.1088/1361-6544/ab60d4
  • Kaiyin Huang; Shaoyun Shi; Wenlei Li Kovalevskaya Exponents, Weak Painlevé Property and Integrability for Quasi-homogeneous Differential Systems, Regular and Chaotic Dynamics, Volume 25 (2020) no. 3, p. 295 | DOI:10.1134/s1560354720030053
  • Jingjia Qu Complex Dynamics of Some Hamiltonian Systems: Nonintegrability of Equations of Motion, Advances in Mathematical Physics, Volume 2019 (2019), p. 1 | DOI:10.1155/2019/9326947
  • Kaiyin Huang; Shaoyun Shi; Zhiguo Xu Integrable deformations, bi-Hamiltonian structures and nonintegrability of a generalized Rikitake system, International Journal of Geometric Methods in Modern Physics, Volume 16 (2019) no. 04, p. 1950059 | DOI:10.1142/s0219887819500592
  • Jaume Llibre; Clàudia Valls On the integrability of Hamiltonian systems with d degrees of freedom and homogenous polynomial potential of degree n, Communications in Contemporary Mathematics, Volume 20 (2018) no. 08, p. 1750045 | DOI:10.1142/s0219199717500456
  • Primitivo B. Acosta-Humánez; J. Tomás Lázaro; Juan J. Morales-Ruiz; Chara Pantazi Differential Galois theory and non-integrability of planar polynomial vector fields, Journal of Differential Equations, Volume 264 (2018) no. 12, p. 7183 | DOI:10.1016/j.jde.2018.02.016
  • Wojciech Szumiński Integrability analysis of chaotic and hyperchaotic finance systems, Nonlinear Dynamics, Volume 94 (2018) no. 1, p. 443 | DOI:10.1007/s11071-018-4370-3
  • Kazuyuki Yagasaki Nonintegrability of the unfolding of the fold-Hopf bifurcation, Nonlinearity, Volume 31 (2018) no. 2, p. 341 | DOI:10.1088/1361-6544/aa92e8
  • Shoya Motonaga; Kazuyuki Yagasaki Nonintegrability of Parametrically Forced Nonlinear Oscillators, Regular and Chaotic Dynamics, Volume 23 (2018) no. 3, p. 291 | DOI:10.1134/s156035471803005x
  • Shogo Yamanaka Local Integrability of Poincaré–Dulac Normal Forms, Regular and Chaotic Dynamics, Volume 23 (2018) no. 7-8, p. 933 | DOI:10.1134/s1560354718070080
  • Andrzej J. Maciejewski; Maria Przybylska; Wojciech Szumiński Anisotropic Kepler and anisotropic two fixed centres problems, Celestial Mechanics and Dynamical Astronomy, Volume 127 (2017) no. 2, p. 163 | DOI:10.1007/s10569-016-9722-z
  • Kaiyin Huang; Shaoyun Shi; Wenlei Li Meromorphic Non-Integrability of Several 3D Dynamical Systems, Entropy, Volume 19 (2017) no. 5, p. 211 | DOI:10.3390/e19050211
  • Kazuyuki Yagasaki; Shogo Yamanaka Nonintegrability of dynamical systems with homo- and heteroclinic orbits, Journal of Differential Equations, Volume 263 (2017) no. 2, p. 1009 | DOI:10.1016/j.jde.2017.03.006
  • Damien Bouloc Some remarks on the topology of hyperbolic actions of Rn on n-manifolds, Journal of Geometry and Physics, Volume 121 (2017), p. 317 | DOI:10.1016/j.geomphys.2017.07.024
  • Guillaume Duval; Andrzej Maciejewski; Witold Respondek Non-integrability of the optimal control problem for n-level quantum systems, Journal of Physics A: Mathematical and Theoretical, Volume 50 (2017) no. 17, p. 175202 | DOI:10.1088/1751-8121/aa6203
  • A. Aparicio-Monforte; T. Dreyfus; J.-A. Weil Liouville integrability: An effective Morales–Ramis–Simó theorem, Journal of Symbolic Computation, Volume 74 (2016), p. 537 | DOI:10.1016/j.jsc.2015.08.009
  • Ognyan Christov Non-integrability of the Karabut system, Nonlinear Analysis: Real World Applications, Volume 32 (2016), p. 91 | DOI:10.1016/j.nonrwa.2016.04.002
  • NGUYEN TIEN ZUNG Non-degenerate singularities of integrable dynamical systems, Ergodic Theory and Dynamical Systems, Volume 35 (2015) no. 3, p. 994 | DOI:10.1017/etds.2013.65
  • Juan J. Morales-Ruiz Picard–Vessiot theory and integrability, Journal of Geometry and Physics, Volume 87 (2015), p. 314 | DOI:10.1016/j.geomphys.2014.07.006
  • Wenlei Li; Shaoyun Shi Weak-Painlevé property and integrability of general dynamical systems, Discrete Continuous Dynamical Systems - A, Volume 34 (2014) no. 9, p. 3667 | DOI:10.3934/dcds.2014.34.3667
  • Takahiro Nishiyama Algebraic approach to non-integrability of Bajer–Moffattʼs steady Stokes flow, Fluid Dynamics Research, Volume 46 (2014) no. 6, p. 061426 | DOI:10.1088/0169-5983/46/6/061426
  • Nguyen VAN MINH; Nguyen Tien ZUNG Geometry of nondegenerate Rn-actions on n-manifolds, Journal of the Mathematical Society of Japan, Volume 66 (2014) no. 3 | DOI:10.2969/jmsj/06630839
  • Nguyen Tien Zung; Nguyen Van Minh Geometry of integrable dynamical systems on 2-dimensional surfaces, Acta Mathematica Vietnamica, Volume 38 (2013) no. 1, p. 79 | DOI:10.1007/s40306-012-0005-9
  • Thierry Combot Non-integrability of a self-gravitating riemann liquid ellipsoid, Regular and Chaotic Dynamics, Volume 18 (2013) no. 5, p. 497 | DOI:10.1134/s1560354713050031
  • Thierry Combot Non-integrability of the equal mass n-body problem with non-zero angular momentum, Celestial Mechanics and Dynamical Astronomy, Volume 114 (2012) no. 4, p. 319 | DOI:10.1007/s10569-012-9417-z
  • Artur Sergyeyev Coupling constant metamorphosis as an integrability-preserving transformation for general finite-dimensional dynamical systems and ODEs, Physics Letters A, Volume 376 (2012) no. 28-29, p. 2015 | DOI:10.1016/j.physleta.2012.04.055

Cité par 53 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: