Comptes Rendus
Dynamical Systems/Mathematical Problems in Mechanics
Galoisian obstructions to non-Hamiltonian integrability
[Obstructions galoisiennes à l'intégrabilité non-hamiltonien]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1323-1326.

Nous montrons la version non-hamiltonienne du théorème de Morales, Ramis et Simo (2007) [6]. Plus précisément, si un système dynamique est méromorphiquement intégrable au sens non-hamiltonien, alors tous les groupes de Galois différentiels des équations variationelles d'ordre arbitraire le long de ses solutions doivent être virtuellement abéliens.

We show that the main theorem of Morales, Ramis and Simo (2007) [6] about Galoisian obstructions to meromorphic integrability of Hamiltonian systems can be naturally extended to the non-Hamiltonian case. Namely, if a dynamical system is meromorphically integrable in the non-Hamiltonian sense, then the differential Galois groups of the variational equations (of any order) along its solutions must be virtually Abelian.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.024

Michaël Ayoul 1 ; Nguyen Tien Zung 1

1 Institut de mathématiques de Toulouse, UMR 5219 CNRS, université Toulouse III, 118 route de Narbonne, 31000 Toulouse, France
@article{CRMATH_2010__348_23-24_1323_0,
     author = {Micha\"el Ayoul and Nguyen Tien Zung},
     title = {Galoisian obstructions to {non-Hamiltonian} integrability},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1323--1326},
     publisher = {Elsevier},
     volume = {348},
     number = {23-24},
     year = {2010},
     doi = {10.1016/j.crma.2010.10.024},
     language = {en},
}
TY  - JOUR
AU  - Michaël Ayoul
AU  - Nguyen Tien Zung
TI  - Galoisian obstructions to non-Hamiltonian integrability
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1323
EP  - 1326
VL  - 348
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2010.10.024
LA  - en
ID  - CRMATH_2010__348_23-24_1323_0
ER  - 
%0 Journal Article
%A Michaël Ayoul
%A Nguyen Tien Zung
%T Galoisian obstructions to non-Hamiltonian integrability
%J Comptes Rendus. Mathématique
%D 2010
%P 1323-1326
%V 348
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2010.10.024
%G en
%F CRMATH_2010__348_23-24_1323_0
Michaël Ayoul; Nguyen Tien Zung. Galoisian obstructions to non-Hamiltonian integrability. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1323-1326. doi : 10.1016/j.crma.2010.10.024. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.024/

[1] L. Bates; R. Cushman What is a completely integrable nonholonomic dynamical system?, Rep. Math. Phys., Volume 44 (1999) no. 1–2, pp. 29-35

[2] O.I. Bogoyavlenskij Extended integrability and bi-hamiltonian systems, Comm. Math. Phys., Volume 196 (1998) no. 1, pp. 19-51

[3] A. Maciejewski; M. Przybylska Differential Galois obstructions for non-commutative integrability, Phys. Lett. A, Volume 372 (2008) no. 33, pp. 5431-5435

[4] A. Maciejewski; M. Przybylska; H. Yoshida Necessary conditions for super-integrability of Hamiltonian systems, Phys. Lett. A, Volume 372 (2008) no. 34, pp. 5581-5587

[5] J. Morales-Ruiz; J.-P. Ramis Galoisian obstructions to integrability of Hamiltonian systems, I and II, Methods Appl. Anal., Volume 8 (2001) no. 1, pp. 33-111

[6] J. Morales-Ruiz; J.-P. Ramis; C. Simo Integrability of Hamiltonian systems and differential Galois groups of higher order variational equations, Ann. Sci. Ec. Norm. Super., Volume 40 (2007) no. 6, pp. 845-884

[7] L. Stolovitch Singular complete integrability, Publ. Math. Inst. Hautes Etudes Sci., Volume 91 (2000), pp. 134-210

[8] N.T. Zung Convergence versus integrability in Poincaré–Dulac normal forms, Math. Res. Lett. (2002)

[9] N.T. Zung Torus actions and integrable systems (A.V. Bolsinov; A.T. Fomenko; A.A. Oshemkov, eds.), Topological Methods in the Theory of Integrable Systems, Cambridge Sci. Publ., 2006, pp. 289-328 | arXiv

Cité par Sources :

Commentaires - Politique