Comptes Rendus
Équations aux dérivées partielles/Physique mathématique
Minoration de la résolvante dans le cas captif
Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1279-1282.

Dans cette note, on démontre une minoration universelle optimale sur la norme de la résolvante tronquée pour les opérateurs de Schrödinger semiclassiques près d'une énergie captive. En particulier, ce résultat implique que des majorations connues pour des captures hyperboliques sont optimales. La preuve repose sur un argument de X.P. Wang et la propagation en temps d'Ehrenfest des états cohérents.

In this note, we prove an optimal universal lower bound on the truncated resolvent for semiclassical Schrödinger operators near a trapping energy. In particular, this shows that known upper bounds for hyperbolic trapping are optimal. The proof rely on an idea of X.P. Wang, and on propagation of coherent states for Ehrenfest times.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.025

Jean-François Bony 1 ; Nicolas Burq 2 ; Thierry Ramond 2

1 IMB (UMR CNRS 5251), université Bordeaux 1, 33405 Talence, France
2 LMO (UMR CNRS 8628), université Paris Sud 11, 91405 Orsay cedex, France
@article{CRMATH_2010__348_23-24_1279_0,
     author = {Jean-Fran\c{c}ois Bony and Nicolas Burq and Thierry Ramond},
     title = {Minoration de la r\'esolvante dans le cas captif},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1279--1282},
     publisher = {Elsevier},
     volume = {348},
     number = {23-24},
     year = {2010},
     doi = {10.1016/j.crma.2010.10.025},
     language = {fr},
}
TY  - JOUR
AU  - Jean-François Bony
AU  - Nicolas Burq
AU  - Thierry Ramond
TI  - Minoration de la résolvante dans le cas captif
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1279
EP  - 1282
VL  - 348
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2010.10.025
LA  - fr
ID  - CRMATH_2010__348_23-24_1279_0
ER  - 
%0 Journal Article
%A Jean-François Bony
%A Nicolas Burq
%A Thierry Ramond
%T Minoration de la résolvante dans le cas captif
%J Comptes Rendus. Mathématique
%D 2010
%P 1279-1282
%V 348
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2010.10.025
%G fr
%F CRMATH_2010__348_23-24_1279_0
Jean-François Bony; Nicolas Burq; Thierry Ramond. Minoration de la résolvante dans le cas captif. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1279-1282. doi : 10.1016/j.crma.2010.10.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.025/

[1] I. Alexandrova; J.-F. Bony; T. Ramond Semiclassical scattering amplitude at the maximum of the potential, Asymptot. Anal., Volume 58 (2008) no. 1–2, pp. 57-125

[2] A. Bouzouina; D. Robert Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Volume 111 (2002) no. 2, pp. 223-252

[3] N. Burq Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math., Volume 124 (2002) no. 4, pp. 677-735

[4] N. Burq Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not. (5) (2002), pp. 221-241

[5] N. Burq Smoothing effect for Schrödinger boundary value problems, Duke Math. J., Volume 123 (2004) no. 2, pp. 403-427

[6] F. Cardoso; G. Vodev Uniform estimates of the resolvent of the Laplace–Beltrami operator on infinite volume Riemannian manifolds. II, Ann. Henri Poincaré, Volume 3 (2002) no. 4, pp. 673-691

[7] F. Castella; T. Jecko Besov estimates in the high-frequency Helmholtz equation, for a non-trapping and C2 potential, J. Differential Equations, Volume 228 (2006) no. 2, pp. 440-485

[8] H. Christianson Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal., Volume 246 (2007) no. 2, pp. 145-195

[9] M. Dimassi; J. Sjöstrand Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, Cambridge, 1999

[10] C. Gérard; A. Martinez Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris, Ser. I, Volume 306 (1988) no. 3, pp. 121-123

[11] M. Ikawa Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier, Volume 38 (1988) no. 2, pp. 113-146

[12] S. Nakamura Scattering theory for the shape resonance model. I. Nonresonant energies, Ann. Inst. H. Poincaré Phys. Théor., Volume 50 (1989) no. 2, pp. 115-131

[13] S. Nonnenmacher; M. Zworski Quantum decay rates in chaotic scattering, Acta Math., Volume 203 (2009) no. 2, pp. 149-233

[14] M. Reed; B. Simon Analysis of Operators, Methods of Modern Mathematical Physics, vol. IV, Academic Press, New York, 1978

[15] D. Robert; H. Tamura Semiclassical estimates for resolvents and asymptotics for total scattering cross-sections, Ann. Inst. H. Poincaré Phys. Théor., Volume 46 (1987) no. 4, pp. 415-442

[16] X.P. Wang Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré Phys. Théor., Volume 47 (1987) no. 1, pp. 25-37

[17] X.P. Wang Semiclassical resolvent estimates for N-body Schrödinger operators, J. Funct. Anal., Volume 97 (1991) no. 2, pp. 466-483

  • Jean-François Bony; Setsuro Fujiié; Thierry Ramond; Maher Zerzeri An example of resonance instability, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 32 (2023) no. 3, pp. 535-554 | DOI:10.5802/afst.1743 | Zbl:1529.35037
  • David Lafontaine; Euan A. Spence; Jared Wunsch For most frequencies, strong trapping has a weak effect in frequency-domain scattering, Communications on Pure and Applied Mathematics, Volume 74 (2021) no. 10, pp. 2025-2063 | DOI:10.1002/cpa.21932 | Zbl:1509.65116
  • Peter Hintz Normally hyperbolic trapping on asymptotically stationary spacetimes, Probability and Mathematical Physics, Volume 2 (2021) no. 1, pp. 71-126 | DOI:10.2140/pmp.2021.2.71 | Zbl:1492.37035
  • Kiril Datchev; Long Jin Exponential lower resolvent bounds far away from trapped sets, Journal of Spectral Theory, Volume 10 (2020) no. 2, pp. 617-649 | DOI:10.4171/jst/307 | Zbl:1446.35149
  • Maxime Ingremeau Sharp resolvent bounds and resonance-free regions, Communications in Partial Differential Equations, Volume 43 (2018) no. 2, pp. 286-291 | DOI:10.1080/03605302.2018.1446169 | Zbl:1390.35214
  • Maxime Ingremeau Distorted plane waves in chaotic scattering, Analysis PDE, Volume 10 (2017) no. 4, pp. 765-816 | DOI:10.2140/apde.2017.10.765 | Zbl:1365.35100
  • Marouane Assal Long time semiclassical Egorov theorem for -pseudodifferential systems, Asymptotic Analysis, Volume 101 (2017) no. 1-2, pp. 17-67 | DOI:10.3233/asy-161394 | Zbl:1358.35143
  • Maciej Zworski Mathematical study of scattering resonances, Bulletin of Mathematical Sciences, Volume 7 (2017) no. 1, pp. 1-85 | DOI:10.1007/s13373-017-0099-4 | Zbl:1368.35230
  • Peter Hintz; András Vasy Analysis of linear waves near the Cauchy horizon of cosmological black holes, Journal of Mathematical Physics, Volume 58 (2017) no. 8, p. 081509 | DOI:10.1063/1.4996575 | Zbl:1370.83119
  • Semyon Dyatlov; Alden Waters Lower Resolvent Bounds and Lyapunov Exponents, Applied Mathematics Research eXpress, Volume 2016 (2016) no. 1, p. 68 | DOI:10.1093/amrx/abv010
  • Stéphane Nonnenmacher; Maciej Zworski Decay of correlations for normally hyperbolic trapping, Inventiones Mathematicae, Volume 200 (2015) no. 2, pp. 345-438 | DOI:10.1007/s00222-014-0527-y | Zbl:1377.37049
  • Julien Royer Uniform resolvent estimates for a non-dissipative Helmholtz equation, Bulletin de la Société Mathématique de France, Volume 142 (2014) no. 4, pp. 591-633 | Zbl:1315.35064
  • Jared Wunsch Resolvent estimates with mild trapping, Journées équations aux dérivées partielles (2013), p. 1 | DOI:10.5802/jedp.96
  • Kiril Datchev; András Vasy Propagation through trapped sets and semiclassical resolvent estimates, Annales de l'Institut Fourier, Volume 62 (2012) no. 6, pp. 2347-2377 | DOI:10.5802/aif.2751 | Zbl:1271.58014
  • Kiril Datchev Extending cutoff resolvent estimates via propagation of singularities, Communications in Partial Differential Equations, Volume 37 (2012) no. 8, pp. 1456-1461 | DOI:10.1080/03605302.2011.626103 | Zbl:1254.35034
  • Kiril Datchev; András Vasy Gluing Semiclassical Resolvent Estimates via Propagation of Singularities, International Mathematics Research Notices, Volume 2012 (2012) no. 23, p. 5409 | DOI:10.1093/imrn/rnr255

Cité par 16 documents. Sources : Crossref, zbMATH

Commentaires - Politique