Dans cette note, on démontre une minoration universelle optimale sur la norme de la résolvante tronquée pour les opérateurs de Schrödinger semiclassiques près d'une énergie captive. En particulier, ce résultat implique que des majorations connues pour des captures hyperboliques sont optimales. La preuve repose sur un argument de X.P. Wang et la propagation en temps d'Ehrenfest des états cohérents.
In this note, we prove an optimal universal lower bound on the truncated resolvent for semiclassical Schrödinger operators near a trapping energy. In particular, this shows that known upper bounds for hyperbolic trapping are optimal. The proof rely on an idea of X.P. Wang, and on propagation of coherent states for Ehrenfest times.
Accepté le :
Publié le :
Jean-François Bony 1 ; Nicolas Burq 2 ; Thierry Ramond 2
@article{CRMATH_2010__348_23-24_1279_0, author = {Jean-Fran\c{c}ois Bony and Nicolas Burq and Thierry Ramond}, title = {Minoration de la r\'esolvante dans le cas captif}, journal = {Comptes Rendus. Math\'ematique}, pages = {1279--1282}, publisher = {Elsevier}, volume = {348}, number = {23-24}, year = {2010}, doi = {10.1016/j.crma.2010.10.025}, language = {fr}, }
TY - JOUR AU - Jean-François Bony AU - Nicolas Burq AU - Thierry Ramond TI - Minoration de la résolvante dans le cas captif JO - Comptes Rendus. Mathématique PY - 2010 SP - 1279 EP - 1282 VL - 348 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2010.10.025 LA - fr ID - CRMATH_2010__348_23-24_1279_0 ER -
Jean-François Bony; Nicolas Burq; Thierry Ramond. Minoration de la résolvante dans le cas captif. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1279-1282. doi : 10.1016/j.crma.2010.10.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.025/
[1] Semiclassical scattering amplitude at the maximum of the potential, Asymptot. Anal., Volume 58 (2008) no. 1–2, pp. 57-125
[2] Uniform semiclassical estimates for the propagation of quantum observables, Duke Math. J., Volume 111 (2002) no. 2, pp. 223-252
[3] Lower bounds for shape resonances widths of long range Schrödinger operators, Amer. J. Math., Volume 124 (2002) no. 4, pp. 677-735
[4] Semi-classical estimates for the resolvent in nontrapping geometries, Int. Math. Res. Not. (5) (2002), pp. 221-241
[5] Smoothing effect for Schrödinger boundary value problems, Duke Math. J., Volume 123 (2004) no. 2, pp. 403-427
[6] Uniform estimates of the resolvent of the Laplace–Beltrami operator on infinite volume Riemannian manifolds. II, Ann. Henri Poincaré, Volume 3 (2002) no. 4, pp. 673-691
[7] Besov estimates in the high-frequency Helmholtz equation, for a non-trapping and
[8] Semiclassical non-concentration near hyperbolic orbits, J. Funct. Anal., Volume 246 (2007) no. 2, pp. 145-195
[9] Spectral Asymptotics in the Semi-Classical Limit, London Mathematical Society Lecture Note Series, vol. 268, Cambridge University Press, Cambridge, 1999
[10] Principe d'absorption limite pour des opérateurs de Schrödinger à longue portée, C. R. Acad. Sci. Paris, Ser. I, Volume 306 (1988) no. 3, pp. 121-123
[11] Decay of solutions of the wave equation in the exterior of several convex bodies, Ann. Inst. Fourier, Volume 38 (1988) no. 2, pp. 113-146
[12] Scattering theory for the shape resonance model. I. Nonresonant energies, Ann. Inst. H. Poincaré Phys. Théor., Volume 50 (1989) no. 2, pp. 115-131
[13] Quantum decay rates in chaotic scattering, Acta Math., Volume 203 (2009) no. 2, pp. 149-233
[14] Analysis of Operators, Methods of Modern Mathematical Physics, vol. IV, Academic Press, New York, 1978
[15] Semiclassical estimates for resolvents and asymptotics for total scattering cross-sections, Ann. Inst. H. Poincaré Phys. Théor., Volume 46 (1987) no. 4, pp. 415-442
[16] Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré Phys. Théor., Volume 47 (1987) no. 1, pp. 25-37
[17] Semiclassical resolvent estimates for N-body Schrödinger operators, J. Funct. Anal., Volume 97 (1991) no. 2, pp. 466-483
- An example of resonance instability, Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI, Volume 32 (2023) no. 3, pp. 535-554 | DOI:10.5802/afst.1743 | Zbl:1529.35037
- For most frequencies, strong trapping has a weak effect in frequency-domain scattering, Communications on Pure and Applied Mathematics, Volume 74 (2021) no. 10, pp. 2025-2063 | DOI:10.1002/cpa.21932 | Zbl:1509.65116
- Normally hyperbolic trapping on asymptotically stationary spacetimes, Probability and Mathematical Physics, Volume 2 (2021) no. 1, pp. 71-126 | DOI:10.2140/pmp.2021.2.71 | Zbl:1492.37035
- Exponential lower resolvent bounds far away from trapped sets, Journal of Spectral Theory, Volume 10 (2020) no. 2, pp. 617-649 | DOI:10.4171/jst/307 | Zbl:1446.35149
- Sharp resolvent bounds and resonance-free regions, Communications in Partial Differential Equations, Volume 43 (2018) no. 2, pp. 286-291 | DOI:10.1080/03605302.2018.1446169 | Zbl:1390.35214
- Distorted plane waves in chaotic scattering, Analysis PDE, Volume 10 (2017) no. 4, pp. 765-816 | DOI:10.2140/apde.2017.10.765 | Zbl:1365.35100
- Long time semiclassical Egorov theorem for
-pseudodifferential systems, Asymptotic Analysis, Volume 101 (2017) no. 1-2, pp. 17-67 | DOI:10.3233/asy-161394 | Zbl:1358.35143 - Mathematical study of scattering resonances, Bulletin of Mathematical Sciences, Volume 7 (2017) no. 1, pp. 1-85 | DOI:10.1007/s13373-017-0099-4 | Zbl:1368.35230
- Analysis of linear waves near the Cauchy horizon of cosmological black holes, Journal of Mathematical Physics, Volume 58 (2017) no. 8, p. 081509 | DOI:10.1063/1.4996575 | Zbl:1370.83119
- Lower Resolvent Bounds and Lyapunov Exponents, Applied Mathematics Research eXpress, Volume 2016 (2016) no. 1, p. 68 | DOI:10.1093/amrx/abv010
- Decay of correlations for normally hyperbolic trapping, Inventiones Mathematicae, Volume 200 (2015) no. 2, pp. 345-438 | DOI:10.1007/s00222-014-0527-y | Zbl:1377.37049
- Uniform resolvent estimates for a non-dissipative Helmholtz equation, Bulletin de la Société Mathématique de France, Volume 142 (2014) no. 4, pp. 591-633 | Zbl:1315.35064
- Resolvent estimates with mild trapping, Journées équations aux dérivées partielles (2013), p. 1 | DOI:10.5802/jedp.96
- Propagation through trapped sets and semiclassical resolvent estimates, Annales de l'Institut Fourier, Volume 62 (2012) no. 6, pp. 2347-2377 | DOI:10.5802/aif.2751 | Zbl:1271.58014
- Extending cutoff resolvent estimates via propagation of singularities, Communications in Partial Differential Equations, Volume 37 (2012) no. 8, pp. 1456-1461 | DOI:10.1080/03605302.2011.626103 | Zbl:1254.35034
- Gluing Semiclassical Resolvent Estimates via Propagation of Singularities, International Mathematics Research Notices, Volume 2012 (2012) no. 23, p. 5409 | DOI:10.1093/imrn/rnr255
Cité par 16 documents. Sources : Crossref, zbMATH
Commentaires - Politique