[Développements asymptotiques combinés et points tournants d'équations différentielles singulièrement perturbées]
We present a new type of asymptotic expansions for functions of two variables, the coefficients of which contain functions of one of the variables as well as functions of the quotient of these two variables. These combined asymptotic expansions (cae) are particularly well suited for the description of solutions of singularly perturbed ordinary differential equations in the neighborhood of turning points. The relations with the method of matched asymptotic expansions and with the classical cae used for boundary layers are described. An application to canard solutions is given.
On présente une théorie de développements asymptotiques pour des fonctions de deux variables, combinant à la fois des fonctions d'une des variables et des fonctions du quotient de ces deux variables. Ces développements asymptotiques combinés (dac) sont bien adaptés à la description des solutions d'équations différentielles ordinaires singulièrement perturbées au voisinage de points tournants. Le lien et les différences avec les méthodes de matching et les développements combinés classiques sont décrits. Cette théorie est appliquée à un problème de solutions canard.
Accepté le :
Publié le :
Augustin Fruchard 1 ; Reinhard Schäfke 2
@article{CRMATH_2010__348_23-24_1273_0, author = {Augustin Fruchard and Reinhard Sch\"afke}, title = {Composite asymptotic expansions and turning points of singularly perturbed ordinary differential equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {1273--1277}, publisher = {Elsevier}, volume = {348}, number = {23-24}, year = {2010}, doi = {10.1016/j.crma.2010.10.027}, language = {en}, }
TY - JOUR AU - Augustin Fruchard AU - Reinhard Schäfke TI - Composite asymptotic expansions and turning points of singularly perturbed ordinary differential equations JO - Comptes Rendus. Mathématique PY - 2010 SP - 1273 EP - 1277 VL - 348 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2010.10.027 LA - en ID - CRMATH_2010__348_23-24_1273_0 ER -
%0 Journal Article %A Augustin Fruchard %A Reinhard Schäfke %T Composite asymptotic expansions and turning points of singularly perturbed ordinary differential equations %J Comptes Rendus. Mathématique %D 2010 %P 1273-1277 %V 348 %N 23-24 %I Elsevier %R 10.1016/j.crma.2010.10.027 %G en %F CRMATH_2010__348_23-24_1273_0
Augustin Fruchard; Reinhard Schäfke. Composite asymptotic expansions and turning points of singularly perturbed ordinary differential equations. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1273-1277. doi : 10.1016/j.crma.2010.10.027. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.027/
[1] On combined asymptotic expansions in singular perturbations, Electron. J. Diff. Eqns., Volume 2002 (2002) no. 51, pp. 1-27
[2] Nonstandard Analysis in Practice, Universitext, Springer, 1995
[3] Asymptotic Analysis of Singular Perturbations, Studies in Mathematics and Its Applications, vol. 9, North-Holland, 1979
[4] T. Forget, Points tournants dégénérés, Thèse de Doctorat, Université de La Rochelle, 2007.
[5] Développements asymptotiques combinés et points tournants d'équations différentielles singulièrement perturbées (preprint HAL: hal-00461542 and) | arXiv
[6] On maximum bifurcation delay in real planar singularly perturbed vector fields, Nonlinear Analysis, Volume 68 (2008) no. 3, pp. 547-576
[7] Asymptotic Expansions of the Solutions of Singularly Perturbed Equations, Izdat. “Nauka”, Moscow, 1973 (in Russian)
[8] Asymptotic Expansions for Ordinary Differential Equations, Interscience, New York, 1965
- Uniform simplification in a full neighborhood of a turning point, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 353 (2015) no. 9, pp. 789-793 | DOI:10.1016/j.crma.2015.06.011 | Zbl:1326.34137
- Advanced Asymptotic Methods, Multiple Time Scale Dynamics, Volume 191 (2015), p. 239 | DOI:10.1007/978-3-319-12316-5_9
- Analysis of Sturm-Liouville eigenproblem with interior singularities and a perturbation parameter, Mathematical Problems in Engineering, Volume 2014 (2014), p. 9 (Id/No 914527) | DOI:10.1155/2014/914527 | Zbl:1407.34121
- Four Introductory Examples, Composite Asymptotic Expansions, Volume 2066 (2013), p. 1 | DOI:10.1007/978-3-642-34035-2_1
- Applications, Composite Asymptotic Expansions, Volume 2066 (2013), p. 119 | DOI:10.1007/978-3-642-34035-2_6
- Historical Remarks, Composite Asymptotic Expansions, Volume 2066 (2013), p. 151 | DOI:10.1007/978-3-642-34035-2_7
- Composite Asymptotic Expansions: General Study, Composite Asymptotic Expansions, Volume 2066 (2013), p. 17 | DOI:10.1007/978-3-642-34035-2_2
- Composite Asymptotic Expansions: Gevrey Theory, Composite Asymptotic Expansions, Volume 2066 (2013), p. 43 | DOI:10.1007/978-3-642-34035-2_3
- A Theorem of Ramis–Sibuya Type, Composite Asymptotic Expansions, Volume 2066 (2013), p. 63 | DOI:10.1007/978-3-642-34035-2_4
- Composite Expansions and Singularly Perturbed Differential Equations, Composite Asymptotic Expansions, Volume 2066 (2013), p. 81 | DOI:10.1007/978-3-642-34035-2_5
- Composite asymptotic expansions and turning points of singularly perturbed ordinary differential equations, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 348 (2010) no. 23-24, pp. 1273-1277 | DOI:10.1016/j.crma.2010.10.027 | Zbl:1208.34092
Cité par 11 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier