[Un modèle pour les sections paraboliques de l'espace des modules des fractions rationnelles quadratiques]
Nous introduisons la notion de lieux de parenté dans les sections paraboliques de l'espace des modules des fractions rationnelles quadratiques. Ce sont des analogues du lieu de non-connexité dans la section correspondant aux polynômes quadratiques. Nous présentons un modèle pour ces lieux, et donnons une stratégie de preuve de la fidélité de ce modèle.
The notion of relatedness loci in the parabolic slices in moduli space of quadratic rational maps is introduced. They are counterparts of the disconnectedness or escape locus in the slice of quadratic polynomials. A model for these loci is presented, and a strategy of proof of the faithfulness of the model is given.
Accepté le :
Publié le :
Eva Uhre 1, 2
@article{CRMATH_2010__348_23-24_1327_0, author = {Eva Uhre}, title = {A model for the parabolic slices $ {\mathrm{Per}}_{1}({e}^{2\pi ip/q})$ in moduli space of quadratic rational maps}, journal = {Comptes Rendus. Math\'ematique}, pages = {1327--1330}, publisher = {Elsevier}, volume = {348}, number = {23-24}, year = {2010}, doi = {10.1016/j.crma.2010.10.033}, language = {en}, }
TY - JOUR AU - Eva Uhre TI - A model for the parabolic slices $ {\mathrm{Per}}_{1}({e}^{2\pi ip/q})$ in moduli space of quadratic rational maps JO - Comptes Rendus. Mathématique PY - 2010 SP - 1327 EP - 1330 VL - 348 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2010.10.033 LA - en ID - CRMATH_2010__348_23-24_1327_0 ER -
Eva Uhre. A model for the parabolic slices $ {\mathrm{Per}}_{1}({e}^{2\pi ip/q})$ in moduli space of quadratic rational maps. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1327-1330. doi : 10.1016/j.crma.2010.10.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.033/
[1] The mapping class group of a generic quadratic rational map and automorphisms of the 2-shift, Invent. Math., Volume 101 (1990) no. 2, pp. 335-372
[2] J. Milnor, Hyperbolic components in spaces of polynomial maps, IMS Stony Brook, preprint #3(1992).
[3] Geometry and dynamics of quadratic rational maps, Experiment. Math., Volume 2 (1993) no. 1, pp. 37-83
[4] No elliptic limits for quadratic maps, Ergod. Th. & Dynam. Sys., Volume 19 (1999), pp. 127-141
[5] Analytic coordinates recording cubic dynamics (D. Schleicher, ed.), Complex Dynamics, Families and Friends, A.K. Peters, 2009, pp. 413-450
[6] Components of degree two hyperbolic rational maps, Invent. Math., Volume 100 (1990), pp. 357-382
[7] E. Uhre, The structure of parabolic slices in moduli space of quadratic rational maps, manuscript, 2009.
[8] B. Wittner, On the bifurcation loci of rational maps of degree two, PhD thesis, Cornell University, 1988.
Cité par Sources :
Commentaires - Politique