Comptes Rendus
Dynamical Systems
A model for the parabolic slices Per1(e2πip/q) in moduli space of quadratic rational maps
[Un modèle pour les sections paraboliques Per1(e2πip/q) de l'espace des modules des fractions rationnelles quadratiques]
Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1327-1330.

Nous introduisons la notion de lieux de parenté dans les sections paraboliques Per1(e2πip/q) de l'espace des modules des fractions rationnelles quadratiques. Ce sont des analogues du lieu de non-connexité dans la section correspondant aux polynômes quadratiques. Nous présentons un modèle pour ces lieux, et donnons une stratégie de preuve de la fidélité de ce modèle.

The notion of relatedness loci in the parabolic slices Per1(e2πip/q) in moduli space of quadratic rational maps is introduced. They are counterparts of the disconnectedness or escape locus in the slice of quadratic polynomials. A model for these loci is presented, and a strategy of proof of the faithfulness of the model is given.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2010.10.033

Eva Uhre 1, 2

1 Institut de mathématiques de Toulouse, Université Paul-Sabatier, 31062 Toulouse cedex, France
2 NSM, Roskilde University, 4000 Roskilde, Denmark
@article{CRMATH_2010__348_23-24_1327_0,
     author = {Eva Uhre},
     title = {A model for the parabolic slices $ {\mathrm{Per}}_{1}({e}^{2\pi ip/q})$ in moduli space of quadratic rational maps},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1327--1330},
     publisher = {Elsevier},
     volume = {348},
     number = {23-24},
     year = {2010},
     doi = {10.1016/j.crma.2010.10.033},
     language = {en},
}
TY  - JOUR
AU  - Eva Uhre
TI  - A model for the parabolic slices $ {\mathrm{Per}}_{1}({e}^{2\pi ip/q})$ in moduli space of quadratic rational maps
JO  - Comptes Rendus. Mathématique
PY  - 2010
SP  - 1327
EP  - 1330
VL  - 348
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2010.10.033
LA  - en
ID  - CRMATH_2010__348_23-24_1327_0
ER  - 
%0 Journal Article
%A Eva Uhre
%T A model for the parabolic slices $ {\mathrm{Per}}_{1}({e}^{2\pi ip/q})$ in moduli space of quadratic rational maps
%J Comptes Rendus. Mathématique
%D 2010
%P 1327-1330
%V 348
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2010.10.033
%G en
%F CRMATH_2010__348_23-24_1327_0
Eva Uhre. A model for the parabolic slices $ {\mathrm{Per}}_{1}({e}^{2\pi ip/q})$ in moduli space of quadratic rational maps. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1327-1330. doi : 10.1016/j.crma.2010.10.033. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.10.033/

[1] L.R. Goldberg; L. Keen The mapping class group of a generic quadratic rational map and automorphisms of the 2-shift, Invent. Math., Volume 101 (1990) no. 2, pp. 335-372

[2] J. Milnor, Hyperbolic components in spaces of polynomial maps, IMS Stony Brook, preprint #3(1992).

[3] J. Milnor Geometry and dynamics of quadratic rational maps, Experiment. Math., Volume 2 (1993) no. 1, pp. 37-83

[4] C.L. Petersen No elliptic limits for quadratic maps, Ergod. Th. & Dynam. Sys., Volume 19 (1999), pp. 127-141

[5] C.L. Petersen; L. Tan Analytic coordinates recording cubic dynamics (D. Schleicher, ed.), Complex Dynamics, Families and Friends, A.K. Peters, 2009, pp. 413-450

[6] M. Rees Components of degree two hyperbolic rational maps, Invent. Math., Volume 100 (1990), pp. 357-382

[7] E. Uhre, The structure of parabolic slices Per1(e2πip/q) in moduli space of quadratic rational maps, manuscript, 2009.

[8] B. Wittner, On the bifurcation loci of rational maps of degree two, PhD thesis, Cornell University, 1988.

Cité par Sources :

Commentaires - Politique