[Variation régulière des lois stables par moyenne pondérée aléatoire]
Soit une suite de variables aléatoires avec et . Nous nous sommes intéressés aux propriétés asymptotiques des solutions de lʼéquation en distribution , où sont des variables aléatoires non-négatives, mutuellement indépendantes et indépendantes de , chacune a la même loi que Z qui est inconnue. Pour une solution de moyenne finie, nous montrons que sous une condition de moment naturelle, la variation régulière de la probabilité de queue est équivalente à celle de , où . Les résultats généralisent les théorèmes correspondants de Bingham et Doney (1974, 1975) [1,2] et de Meyer (1982) [6] sur les processus de Galton–Watson et de Crump–Mode–Jirina, et améliorent ceux dʼIksanov et Polotskiy (2006) [7] sur les marches aléatoires branchantes.
Let be a sequence of random variables with and . We are interested in asymptotic properties of solutions of the distributional equation , where are nonnegative random variables independent of each other and independent of , each has the same distribution as Z which is unknown. For a solution with finite mean, we show that under a natural moment condition, the regular variation of is equivalent to that of , where . The results generalize the corresponding theorems of Bingham and Doney (1974, 1975) [1,2] and de Meyer (1982) [6] on Galton–Watson processes and Crump–Mode–Jirina processes, and improve those of Iksanov and Polotskiy (2006) [7] on branching random walks.
Accepté le :
Publié le :
Xingang Liang 1, 2 ; Quansheng Liu 1, 2
@article{CRMATH_2011__349_5-6_347_0, author = {Xingang Liang and Quansheng Liu}, title = {Tail behavior of laws stable by random weighted mean}, journal = {Comptes Rendus. Math\'ematique}, pages = {347--352}, publisher = {Elsevier}, volume = {349}, number = {5-6}, year = {2011}, doi = {10.1016/j.crma.2011.01.029}, language = {en}, }
Xingang Liang; Quansheng Liu. Tail behavior of laws stable by random weighted mean. Comptes Rendus. Mathématique, Volume 349 (2011) no. 5-6, pp. 347-352. doi : 10.1016/j.crma.2011.01.029. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.01.029/
[1] Asymptotic properties of supercritical branching processes I: The Galton–Watson processes, Adv. in Appl. Probab., Volume 6 (1974), pp. 711-731
[2] Asymptotic properties of supercritical branching processes II: Crump–Mode and Jirina processes, Adv. in Appl. Probab., Volume 7 (1975), pp. 66-82
[3] Regular Variation, Cambridge Univ. Press, Cambridge, 1987
[4] An Abel–Tauber theorem for Laplace transforms, J. Lond. Math. Soc., Volume 17 (1976), pp. 102-106
[5] On the asymptotic behavior of the distributions of the busy period and service time in , J. Appl. Probab., Volume 17 (1980), pp. 802-813
[6] On a theorem of Bingham and Doney, J. Appl. Probab., Volume 19 (1982), pp. 217-220
[7] Regular variation in the branching random walk, Theory Stoch. Process., Volume 12 (2006) no. 28, pp. 38-54
[8] A simple path to Bigginsʼ martingale convergence for branching random walk, Classical and Modern Branching Processes, IMA Vol. Math. Appl., vol. 84, Springer, New York, 1997, pp. 217-221
[9] On generalized multiplicative cascades, Stoch. Proc. Appl., Volume 86 (2000), pp. 263-286
[10] Convergence rate for stable weighted branching processes, Versailles, 2002 (B. Chauvin; P. Flajolet; A. Mokkadem, eds.) (Trends Math.), Birkhäuser, Basel (2002), pp. 441-453
Cité par Sources :
Commentaires - Politique