[Moments pondérés pour la limite dʼun processus de Galton–Watson normalisé supercritique]
Soient un processus de Galton–Watson surcritique et W la limite de la population normalisée , où est la moyenne de la loi de reproduction. Soit ℓ une fonction positive à variation lente en ∞. Bingham et Doney (1974) [4] ont montré que, pour non entier, si et seulement si ; Alsmeyer et Rösler (2004) [2] ont montré lʼéquivalence lorsque nʼest pas une puissance de 2. Nous le montrons ici pour tout .
Let be a supercritical Galton–Watson process, and let W be the limit of the normalized population size , where is the mean of the offspring distribution. Let ℓ be a positive function slowly varying at ∞. Bingham and Doney (1974) [4] showed that for not an integer, if and only if ; Alsmeyer and Rösler (2004) [2] proved the equivalence for not a dyadic power. Here we prove it for all .
Accepté le :
Publié le :
Xingang Liang 1, 2 ; Quansheng Liu 2, 3
@article{CRMATH_2013__351_19-20_769_0, author = {Xingang Liang and Quansheng Liu}, title = {Weighted moments for the limit of a normalized supercritical {Galton{\textendash}Watson} process}, journal = {Comptes Rendus. Math\'ematique}, pages = {769--773}, publisher = {Elsevier}, volume = {351}, number = {19-20}, year = {2013}, doi = {10.1016/j.crma.2013.09.015}, language = {en}, }
TY - JOUR AU - Xingang Liang AU - Quansheng Liu TI - Weighted moments for the limit of a normalized supercritical Galton–Watson process JO - Comptes Rendus. Mathématique PY - 2013 SP - 769 EP - 773 VL - 351 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2013.09.015 LA - en ID - CRMATH_2013__351_19-20_769_0 ER -
Xingang Liang; Quansheng Liu. Weighted moments for the limit of a normalized supercritical Galton–Watson process. Comptes Rendus. Mathématique, Volume 351 (2013) no. 19-20, pp. 769-773. doi : 10.1016/j.crma.2013.09.015. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2013.09.015/
[1] Double martingale structure and existence of ϕ-moments for weighted branching processes, Münster J. Math., Volume 3 (2010), pp. 163-211
[2] On the existence of ϕ-moments of the limit of a normalized supercritical Galton–Watson process, J. Theor. Probab., Volume 17 (2004) no. 4, pp. 905-928
[3] Branching Processes, Springer, New York, 1972
[4] Asymptotic properties of supercritical branching processes I: The Galton–Watson processes, Adv. Appl. Probab., Volume 6 (1974), pp. 711-731
[5] Regular Variation, Cambridge Univ. Press, Cambridge, 1987
[6] Probability Theory: Independence, Interchangeability, Martingales, Springer-Verlag, 1995
[7] Fixed points of the smoothing transformation, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 64 (1983), pp. 275-301
[8] The Theory of Branching Processes, Springer, Berlin, 1963
[9] Elementary fixed points of the BRW smoothing transforms with infinite number of summands, Stoch. Process. Appl., Volume 114 (2004) no. 1, pp. 27-50
[10] Sur certaines martingales de Benoît Mandelbrot, Adv. Math., Volume 22 (1976), pp. 131-145
[11] On weighted branching processes in random environment, Stoch. Process. Appl., Volume 109 (2004) no. 1, pp. 113-144
[12] Propriétés asymptotiques des martingales de Mandelbrot et des marches aléatoires branchantes, Université de Bretagne-Sud, France, 2010 (Thèse de doctorat)
[13] On generalized multiplicative cascades, Stoch. Process. Appl., Volume 86 (2000), pp. 263-286
[14] Random recursive constructions: asymptotic geometric and topological properties, Trans. Am. Math. Soc., Volume 295 (1986) no. 1, pp. 325-346
[15] Maximum of the critical Galton–Watson processes and left continuous random walks, Theory Probab. Appl., Volume 42 (1997), pp. 17-27
Cité par Sources :
Commentaires - Politique