[Structures complexes sur les produits de fibrés en cercles au dessus des variétés complexes]
Dans ce Note, on propose une construction de structures complexes sur le produit de deux fibré en cercles associés aux fibrés en droites, amples, négatifs sur des variétés drapeaux , , où les sont des groupes de Lie linéaires connexes, complexes, semi-simples et les sont des sous-groupes paraboliques. La variété construite S nʼest pas symplectique et donc nʼest pas kählérienne. On démontre que le groupe des fibrés en droites holomorphes topologiquement triviaux est isomorphe aux nombres complexes .
We propose, in this Note, a construction of complex structures on the product of two circle bundles associated to negative ample line bundles over flag varieties , , where the are complex semisimple linear Lie groups and the are parabolic subgroups. The resulting manifold S is non-symplectic and hence non-Kählerian. We show that the group of topologically trivial holomorphic line bundles on S is isomorphic to .
Accepté le :
Publié le :
Parameswaran Sankaran 1 ; Ajay Singh Thakur 1
@article{CRMATH_2011__349_7-8_437_0, author = {Parameswaran Sankaran and Ajay Singh Thakur}, title = {Complex structures on products of circle bundles over complex manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {437--439}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.02.016}, language = {en}, }
TY - JOUR AU - Parameswaran Sankaran AU - Ajay Singh Thakur TI - Complex structures on products of circle bundles over complex manifolds JO - Comptes Rendus. Mathématique PY - 2011 SP - 437 EP - 439 VL - 349 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2011.02.016 LA - en ID - CRMATH_2011__349_7-8_437_0 ER -
Parameswaran Sankaran; Ajay Singh Thakur. Complex structures on products of circle bundles over complex manifolds. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 437-439. doi : 10.1016/j.crma.2011.02.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.02.016/
[1] Algebraic Methods in the Global Theory of Complex Spaces, John Wiley, London, 1976
[2] A class of compact, complex manifolds which are not algebraic, Ann. of Math. (2), Volume 58 (1953), pp. 494-500
[3] Formule di Künneth per la coomologia a valori in an fascio, Ann. Sc. Norm. Super. Pisa, Volume 27 (1974), pp. 905-931
[4] Holomorphic flows and complex structures on products of odd-dimensional spheres, Math. Ann., Volume 306 (1996) no. 4, pp. 781-817
[5] Projective normality of flag varieties and Schubert varieties, Invent. Math., Volume 79 (1985) no. 2, pp. 217-224
[6] Schubert varieties are arithmetically Cohen–Macaulay, Invent. Math., Volume 80 (1985) no. 2, pp. 283-294
[7] A coincidence theorem for holomorphic maps to , Canad. Math. Bull., Volume 46 (2003) no. 2, pp. 291-298
[8] Closed manifolds with homogeneous complex structure, Amer. J. Math., Volume 76 (1954), pp. 1-32
Cité par Sources :
Commentaires - Politique