[Structures complexes sur les produits de fibrés en cercles au dessus des variétés complexes]
Dans ce Note, on propose une construction de structures complexes sur le produit de deux fibré en cercles associés aux fibrés en droites, amples, négatifs sur des variétés drapeaux
We propose, in this Note, a construction of complex structures on the product of two circle bundles associated to negative ample line bundles over flag varieties
Accepté le :
Publié le :
Parameswaran Sankaran 1 ; Ajay Singh Thakur 1
@article{CRMATH_2011__349_7-8_437_0, author = {Parameswaran Sankaran and Ajay Singh Thakur}, title = {Complex structures on products of circle bundles over complex manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {437--439}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.02.016}, language = {en}, }
TY - JOUR AU - Parameswaran Sankaran AU - Ajay Singh Thakur TI - Complex structures on products of circle bundles over complex manifolds JO - Comptes Rendus. Mathématique PY - 2011 SP - 437 EP - 439 VL - 349 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2011.02.016 LA - en ID - CRMATH_2011__349_7-8_437_0 ER -
Parameswaran Sankaran; Ajay Singh Thakur. Complex structures on products of circle bundles over complex manifolds. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 437-439. doi : 10.1016/j.crma.2011.02.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.02.016/
[1] Algebraic Methods in the Global Theory of Complex Spaces, John Wiley, London, 1976
[2] A class of compact, complex manifolds which are not algebraic, Ann. of Math. (2), Volume 58 (1953), pp. 494-500
[3] Formule di Künneth per la coomologia a valori in an fascio, Ann. Sc. Norm. Super. Pisa, Volume 27 (1974), pp. 905-931
[4] Holomorphic flows and complex structures on products of odd-dimensional spheres, Math. Ann., Volume 306 (1996) no. 4, pp. 781-817
[5] Projective normality of flag varieties and Schubert varieties, Invent. Math., Volume 79 (1985) no. 2, pp. 217-224
[6] Schubert varieties are arithmetically Cohen–Macaulay, Invent. Math., Volume 80 (1985) no. 2, pp. 283-294
[7] A coincidence theorem for holomorphic maps to
[8] Closed manifolds with homogeneous complex structure, Amer. J. Math., Volume 76 (1954), pp. 1-32
Cité par Sources :
Commentaires - Politique