[Schémas avec correction de déplacement incrémentale pour le couplage explicite dʼune structure mince et dʼun fluide incompressible]
Dans cette Note nous proposons deux schémas avec correction de déplacement incrémentale pour le couplage explicite dʼune structure mince et dʼun fluide incompressible. La stabilité et la précision supérieure de ces schémas (par rapport à la variante originale non-incrémentale) sont analysées théoriquement et puis confirmées numériquement.
In this Note we propose two incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid. The stability and the superior accuracy of these schemes (with respect to the original non-incremental variant) are theoretically analyzed and then numerically confirmed in a benchmark.
Accepté le :
Publié le :
Miguel A. Fernández 1
@article{CRMATH_2011__349_7-8_473_0, author = {Miguel A. Fern\'andez}, title = {Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid}, journal = {Comptes Rendus. Math\'ematique}, pages = {473--477}, publisher = {Elsevier}, volume = {349}, number = {7-8}, year = {2011}, doi = {10.1016/j.crma.2011.03.001}, language = {en}, }
TY - JOUR AU - Miguel A. Fernández TI - Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid JO - Comptes Rendus. Mathématique PY - 2011 SP - 473 EP - 477 VL - 349 IS - 7-8 PB - Elsevier DO - 10.1016/j.crma.2011.03.001 LA - en ID - CRMATH_2011__349_7-8_473_0 ER -
%0 Journal Article %A Miguel A. Fernández %T Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid %J Comptes Rendus. Mathématique %D 2011 %P 473-477 %V 349 %N 7-8 %I Elsevier %R 10.1016/j.crma.2011.03.001 %G en %F CRMATH_2011__349_7-8_473_0
Miguel A. Fernández. Incremental displacement-correction schemes for the explicit coupling of a thin structure with an incompressible fluid. Comptes Rendus. Mathématique, Volume 349 (2011) no. 7-8, pp. 473-477. doi : 10.1016/j.crma.2011.03.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.03.001/
[1] Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility, Comput. Methods Appl. Mech. Engrg., Volume 198 (2009) no. 5–8, pp. 766-784
[2] Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Engrg., Volume 194 (2005) no. 42–44, pp. 4506-4527
[3] The Finite Element Analysis of Shells – Fundamentals, Springer, 2011
[4] M.A. Fernández, Incremental displacement-correction schemes for incompressible fluid-structure interaction: stability and convergence analysis, in preparation.
[5] Cardiovascular Mathematics. Modeling and Simulation of the Circulatory System (L. Formaggia; A. Quarteroni; A. Veneziani, eds.), Modeling, Simulation and Applications, vol. 1, Springer, 2009
[6] An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Engrg., Volume 195 (2006) no. 44–47, pp. 6011-6045
[7] Stable loosely-coupled-type algorithm for fluid-structure interaction in blood flow, J. Comp. Phys., Volume 228 (2009) no. 18, pp. 6916-6937
[8] http://www.freefem.org/ff++ (Freefem++)
- Multiphysics mixed finite element method with Nitsche's technique for Stokes-poroelasticity problem, Numerical Methods for Partial Differential Equations, Volume 39 (2023) no. 1, pp. 544-576 | DOI:10.1002/num.22903 | Zbl:1531.65161
- A mixed elasticity formulation for fluid-poroelastic structure interaction, European Series in Applied and Industrial Mathematics (ESAIM): Mathematical Modelling and Numerical Analysis, Volume 56 (2022) no. 1, pp. 1-40 | DOI:10.1051/m2an/2021083 | Zbl:1492.76110
- A partitioned numerical scheme for fluid-structure interaction with slip, Mathematical Modelling of Natural Phenomena, Volume 16 (2021), p. 35 (Id/No 8) | DOI:10.1051/mmnp/2020051 | Zbl:1468.76037
- A split-step finite-element method for incompressible Navier-Stokes equations with high-order accuracy up-to the boundary, Journal of Computational Physics, Volume 408 (2020), p. 28 (Id/No 109274) | DOI:10.1016/j.jcp.2020.109274 | Zbl:7505610
- A Lagrange multiplier method for a Stokes-Biot fluid-poroelastic structure interaction model, Numerische Mathematik, Volume 140 (2018) no. 2, pp. 513-553 | DOI:10.1007/s00211-018-0967-1 | Zbl:1406.76081
- A new partitioned staggered scheme for flexible multibody interactions with strong inertial effects, Computer Methods in Applied Mechanics and Engineering, Volume 315 (2017), pp. 316-347 | DOI:10.1016/j.cma.2016.10.044 | Zbl:1439.70011
- Coupling schemes for the FSI forward prediction challenge: Comparative study and validation, International Journal for Numerical Methods in Biomedical Engineering, Volume 33 (2017) no. 4 | DOI:10.1002/cnm.2813
- A stable partitioned FSI algorithm for incompressible flow and deforming beams, Journal of Computational Physics, Volume 312 (2016), pp. 272-306 | DOI:10.1016/j.jcp.2016.02.002 | Zbl:1351.74157
- An Operator Splitting Approach to the Solution of Fluid-Structure Interaction Problems in Hemodynamics, Splitting Methods in Communication, Imaging, Science, and Engineering (2016), p. 731 | DOI:10.1007/978-3-319-41589-5_22
- A partitioned scheme for fluid-composite structure interaction problems, Journal of Computational Physics, Volume 281 (2015), pp. 493-517 | DOI:10.1016/j.jcp.2014.10.045 | Zbl:1351.76321
- Fully decoupled time-marching schemes for incompressible fluid/thin-walled structure interaction, Journal of Computational Physics, Volume 297 (2015), pp. 156-181 | DOI:10.1016/j.jcp.2015.05.009 | Zbl:1349.76201
- An operator splitting approach for the interaction between a fluid and a multilayered poroelastic structure, Numerical Methods for Partial Differential Equations, Volume 31 (2015) no. 4, pp. 1054-1100 | DOI:10.1002/num.21936 | Zbl:1329.74270
- Fluid-structure interaction in hemodynamics: modeling, analysis, and numerical simulation, Fluid-structure interaction and biomedical applications, Basel: Birkhäuser/Springer, 2014, pp. 79-195 | DOI:10.1007/978-3-0348-0822-4_2 | Zbl:1371.74086
- Partitioned simulation of fluid-structure interaction. Coupling black-box solvers with quasi-Newton techniques, Archives of Computational Methods in Engineering, Volume 20 (2013) no. 3, pp. 185-238 | DOI:10.1007/s11831-013-9085-5 | Zbl:1354.74066
- Explicit Robin-Neumann schemes for the coupling of incompressible fluids with thin-walled structures, Computer Methods in Applied Mechanics and Engineering, Volume 267 (2013), pp. 566-593 | DOI:10.1016/j.cma.2013.09.020 | Zbl:1286.76041
- Incremental displacement-correction schemes for incompressible fluid-structure interaction. Stability and convergence analysis, Numerische Mathematik, Volume 123 (2013) no. 1, pp. 21-65 | DOI:10.1007/s00211-012-0481-9 | Zbl:1331.76068
- Combined interface boundary condition method for fluid-rigid body interaction, Computer Methods in Applied Mechanics and Engineering, Volume 223-224 (2012), pp. 81-102 | DOI:10.1016/j.cma.2012.02.007 | Zbl:1253.74034
- Displacement-velocity correction schemes for incompressible fluid-structure interaction, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 349 (2011) no. 17-18, pp. 1011-1015 | DOI:10.1016/j.crma.2011.08.004 | Zbl:1368.76021
- Coupling schemes for incompressible fluid-structure interaction: implicit, semi-implicit and explicit, SeMA Journal, Volume 55 (2011) no. 1, p. 59 | DOI:10.1007/bf03322593
Cité par 19 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier