[Dimension de Hausdorff du shift de Fibonacci multiplicatif]
Nous calculons la dimension de Hausdorff du « shift de Fibonacci multiplicatif », cʼest-à-dire lʼensemble des nombres réels dans
We compute the Hausdorff dimension of the “multiplicative golden mean shift” defined as the set of all reals in
Accepté le :
Publié le :
Richard Kenyon 1 ; Yuval Peres 2 ; Boris Solomyak 3
@article{CRMATH_2011__349_11-12_625_0, author = {Richard Kenyon and Yuval Peres and Boris Solomyak}, title = {Hausdorff dimension of the multiplicative golden mean shift}, journal = {Comptes Rendus. Math\'ematique}, pages = {625--628}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.05.009}, language = {en}, }
TY - JOUR AU - Richard Kenyon AU - Yuval Peres AU - Boris Solomyak TI - Hausdorff dimension of the multiplicative golden mean shift JO - Comptes Rendus. Mathématique PY - 2011 SP - 625 EP - 628 VL - 349 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2011.05.009 LA - en ID - CRMATH_2011__349_11-12_625_0 ER -
Richard Kenyon; Yuval Peres; Boris Solomyak. Hausdorff dimension of the multiplicative golden mean shift. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 625-628. doi : 10.1016/j.crma.2011.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.05.009/
[1] T. Bedford, Crinkly curves, Markov partitions and box dimension in self-similar sets, PhD thesis, University of Warwick, 1984.
[2] Ergodic Theory and Information, Wiley, New York, 1965
[3] Techniques in Fractal Geometry, John Wiley & Sons, Chichester, 1997
[4] Level sets of multiple ergodic averages (preprint) | arXiv
[5] Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, Volume 1 (1967), pp. 1-49
[6] Hausdorff dimension for fractals invariant under the multiplicative integers, 2011 (preprint) | arXiv
[7] The Hausdorff dimension of general Sierpinski carpets, Nagoya Math. J., Volume 96 (1984), pp. 1-9
- On the Entropy of Multidimensional Multiplicative Integer Subshifts, Journal of Statistical Physics, Volume 182 (2021) no. 2 | DOI:10.1007/s10955-021-02703-7
- Pattern generation problems arising in multiplicative integer systems, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 5, p. 1234 | DOI:10.1017/etds.2017.74
- Multifractal analysis of some multiple ergodic averages in linear Cookie-Cutter dynamical systems, Mathematische Zeitschrift, Volume 290 (2018) no. 1-2, p. 63 | DOI:10.1007/s00209-017-2008-7
- Multifractal analysis of some multiple ergodic averages, Advances in Mathematics, Volume 295 (2016), p. 271 | DOI:10.1016/j.aim.2016.03.012
- The Multifractal Spectra of V-Statistics, Further Developments in Fractals and Related Fields (2013), p. 135 | DOI:10.1007/978-0-8176-8400-6_7
- The Multiplicative Golden Mean Shift Has Infinite Hausdorff Measure, Further Developments in Fractals and Related Fields (2013), p. 193 | DOI:10.1007/978-0-8176-8400-6_10
- Contracting Similarity Fixed Point of General Sierpinski Gasket, Journal of Multimedia, Volume 8 (2013) no. 6 | DOI:10.4304/jmm.8.6.816-822
- Hausdorff dimension for fractals invariant under multiplicative integers, Ergodic Theory and Dynamical Systems, Volume 32 (2012) no. 5, p. 1567 | DOI:10.1017/s0143385711000538
Cité par 8 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier