Comptes Rendus
Mathematical Analysis/Dynamical Systems
Hausdorff dimension of the multiplicative golden mean shift
[Dimension de Hausdorff du shift de Fibonacci multiplicatif]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 625-628.

Nous calculons la dimension de Hausdorff du « shift de Fibonacci multiplicatif », cʼest-à-dire lʼensemble des nombres réels dans [0,1] dont le développement en binaire (xk) satisfait xkx2k=0 pour tout k1. Nous montrons que la dimension de Hausdorff est plus petite que la dimension de Minkowski.

We compute the Hausdorff dimension of the “multiplicative golden mean shift” defined as the set of all reals in [0,1] whose binary expansion (xk) satisfies xkx2k=0 for all k1, and show that it is smaller than the Minkowski dimension.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.05.009

Richard Kenyon 1 ; Yuval Peres 2 ; Boris Solomyak 3

1 Department of Mathematics, Brown University, Box 1917, 151 Thayer Street, Providence, RI 02912, USA
2 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
3 Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195-4350, USA
@article{CRMATH_2011__349_11-12_625_0,
     author = {Richard Kenyon and Yuval Peres and Boris Solomyak},
     title = {Hausdorff dimension of the multiplicative golden mean shift},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {625--628},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.05.009},
     language = {en},
}
TY  - JOUR
AU  - Richard Kenyon
AU  - Yuval Peres
AU  - Boris Solomyak
TI  - Hausdorff dimension of the multiplicative golden mean shift
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 625
EP  - 628
VL  - 349
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2011.05.009
LA  - en
ID  - CRMATH_2011__349_11-12_625_0
ER  - 
%0 Journal Article
%A Richard Kenyon
%A Yuval Peres
%A Boris Solomyak
%T Hausdorff dimension of the multiplicative golden mean shift
%J Comptes Rendus. Mathématique
%D 2011
%P 625-628
%V 349
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2011.05.009
%G en
%F CRMATH_2011__349_11-12_625_0
Richard Kenyon; Yuval Peres; Boris Solomyak. Hausdorff dimension of the multiplicative golden mean shift. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 625-628. doi : 10.1016/j.crma.2011.05.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.05.009/

[1] T. Bedford, Crinkly curves, Markov partitions and box dimension in self-similar sets, PhD thesis, University of Warwick, 1984.

[2] P. Billingsley Ergodic Theory and Information, Wiley, New York, 1965

[3] K. Falconer Techniques in Fractal Geometry, John Wiley & Sons, Chichester, 1997

[4] A. Fan; L. Liao; J. Ma Level sets of multiple ergodic averages (preprint) | arXiv

[5] H. Furstenberg Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation, Math. Systems Theory, Volume 1 (1967), pp. 1-49

[6] R. Kenyon; Y. Peres; B. Solomyak Hausdorff dimension for fractals invariant under the multiplicative integers, 2011 (preprint) | arXiv

[7] C. McMullen The Hausdorff dimension of general Sierpinski carpets, Nagoya Math. J., Volume 96 (1984), pp. 1-9

  • Jung-Chao Ban; Wen-Guei Hu; Guan-Yu Lai On the Entropy of Multidimensional Multiplicative Integer Subshifts, Journal of Statistical Physics, Volume 182 (2021) no. 2 | DOI:10.1007/s10955-021-02703-7
  • JUNG-CHAO BAN; WEN-GUEI HU; SONG-SUN LIN Pattern generation problems arising in multiplicative integer systems, Ergodic Theory and Dynamical Systems, Volume 39 (2019) no. 5, p. 1234 | DOI:10.1017/etds.2017.74
  • Aihua Fan; Lingmin Liao; Meng Wu Multifractal analysis of some multiple ergodic averages in linear Cookie-Cutter dynamical systems, Mathematische Zeitschrift, Volume 290 (2018) no. 1-2, p. 63 | DOI:10.1007/s00209-017-2008-7
  • Ai-Hua Fan; Jörg Schmeling; Meng Wu Multifractal analysis of some multiple ergodic averages, Advances in Mathematics, Volume 295 (2016), p. 271 | DOI:10.1016/j.aim.2016.03.012
  • Ai-hua Fan; Jörg Schmeling; Meng Wu The Multifractal Spectra of V-Statistics, Further Developments in Fractals and Related Fields (2013), p. 135 | DOI:10.1007/978-0-8176-8400-6_7
  • Yuval Peres; Boris Solomyak The Multiplicative Golden Mean Shift Has Infinite Hausdorff Measure, Further Developments in Fractals and Related Fields (2013), p. 193 | DOI:10.1007/978-0-8176-8400-6_10
  • Shanhui Sun; Zhuangzhuang Li; Yimin Wu; Yan Xu Contracting Similarity Fixed Point of General Sierpinski Gasket, Journal of Multimedia, Volume 8 (2013) no. 6 | DOI:10.4304/jmm.8.6.816-822
  • RICHARD KENYON; YUVAL PERES; BORIS SOLOMYAK Hausdorff dimension for fractals invariant under multiplicative integers, Ergodic Theory and Dynamical Systems, Volume 32 (2012) no. 5, p. 1567 | DOI:10.1017/s0143385711000538

Cité par 8 documents. Sources : Crossref

Commentaires - Politique


Il n'y a aucun commentaire pour cet article. Soyez le premier à écrire un commentaire !


Publier un nouveau commentaire:

Publier une nouvelle réponse: