[Homologie et K-théorie des groupes de Bianchi]
Nous mettons en évidence une correspondance entre la torsion homologique des groupes de Bianchi et de nouveaux invariants géométriques, calculables grâce à leur action sur lʼespace hyperbolique. Nous lʼutilisons pour calculer explicitement leur homologie de groupe à coefficients entiers et leur K-homologie équivariante. En conséquence de la conjecture de Baum/Connes, qui est vérifiée pour ces groupes, nous obtenons la K-théorie de leurs C*-algèbres réduites en termes dʼimages isomorphes de la K-homologie calculée. Nous trouvons dʼailleurs une application à la cohomologie dʼorbi-espace de Chen/Ruan.
We reveal a correspondence between the homological torsion of the Bianchi groups and new geometric invariants, which are effectively computable thanks to their action on hyperbolic space. We use it to explicitly compute their integral group homology and equivariant K-homology. By the Baum/Connes conjecture, which holds for the Bianchi groups, we obtain the K-theory of their reduced -algebras in terms of isomorphic images of the computed K-homology. We further find an application to Chen/Ruan orbifold cohomology.
Accepté le :
Publié le :
Alexander D. Rahm 1
@article{CRMATH_2011__349_11-12_615_0, author = {Alexander D. Rahm}, title = {Homology and {\protect\emph{K}-theory} of the {Bianchi} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {615--619}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.05.014}, language = {en}, }
Alexander D. Rahm. Homology and K-theory of the Bianchi groups. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 615-619. doi : 10.1016/j.crma.2011.05.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.05.014/
[1] R. Aurich, F. Steiner, H. Then, Numerical computation of Maass waveforms and an application to cosmology, Contribution to the Proceedings of the “International School on Mathematical Aspects of Quantum Chaos II”, Lecture Notes in Physics, Springer, 2004, in press.
[2] Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî, Math. Ann., Volume 40 (1892) no. 3, pp. 332-412 (MR 1510727)
[3] Cohomology of Groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, 1982
[4] A new cohomology theory of orbifold, Comm. Math. Phys., Volume 248 (2004) no. 1, pp. 1-31
[5] Groups Acting on Hyperbolic Space, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998 MR 1483315 (98g:11058)
[6] Algebraic Theory of the Bianchi Groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 129, Marcel Dekker Inc., New York, 1989 MR 1010229 (90h:20002)
[7] Operator K-theory for the group , J. Reine Angew. Math., Volume 463 (1995), pp. 99-152
[8] The Arithmetic of Hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003 MR 1937957 (2004i:57021)
[9] Les groupes kleinéens, Mémoire, Acta Math., Volume 3 (1966) no. 1, pp. 49-92 (MR 1554613)
[10] A.D. Rahm, Bianchi.gp, Open source program (GNU general public license), 2010. Available at http://tel.archives-ouvertes.fr/tel-00526976/ this program computes a fundamental domain for the Bianchi groups in hyperbolic 3-space, the associated quotient space and essential information about the integral homology of the Bianchi groups.
[11] A.D. Rahm, (Co)homologies and K-theory of Bianchi groups using computational geometric models, PhD thesis, Institut Fourier, Université de Grenoble et Universität Göttingen, soutenue le 15 octobre 2010, http://tel.archives-ouvertes.fr/tel-00526976/.
[12] The integral homology of of imaginary quadratic integers with non-trivial class group, J. Pure Appl. Algebra, Volume 215 (2011), pp. 1443-1472
[13] The integral homology of and of Euclidean imaginary quadratic integers, Comment. Math. Helv., Volume 58 (1983) no. 4, pp. 573-598
Cité par Sources :
Commentaires - Politique