[Homologie et K-théorie des groupes de Bianchi]
We reveal a correspondence between the homological torsion of the Bianchi groups and new geometric invariants, which are effectively computable thanks to their action on hyperbolic space. We use it to explicitly compute their integral group homology and equivariant K-homology. By the Baum/Connes conjecture, which holds for the Bianchi groups, we obtain the K-theory of their reduced
Nous mettons en évidence une correspondance entre la torsion homologique des groupes de Bianchi et de nouveaux invariants géométriques, calculables grâce à leur action sur lʼespace hyperbolique. Nous lʼutilisons pour calculer explicitement leur homologie de groupe à coefficients entiers et leur K-homologie équivariante. En conséquence de la conjecture de Baum/Connes, qui est vérifiée pour ces groupes, nous obtenons la K-théorie de leurs C*-algèbres réduites en termes dʼimages isomorphes de la K-homologie calculée. Nous trouvons dʼailleurs une application à la cohomologie dʼorbi-espace de Chen/Ruan.
Accepté le :
Publié le :
Alexander D. Rahm 1
@article{CRMATH_2011__349_11-12_615_0, author = {Alexander D. Rahm}, title = {Homology and {\protect\emph{K}-theory} of the {Bianchi} groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {615--619}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.05.014}, language = {en}, }
Alexander D. Rahm. Homology and K-theory of the Bianchi groups. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 615-619. doi : 10.1016/j.crma.2011.05.014. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.05.014/
[1] R. Aurich, F. Steiner, H. Then, Numerical computation of Maass waveforms and an application to cosmology, Contribution to the Proceedings of the “International School on Mathematical Aspects of Quantum Chaos II”, Lecture Notes in Physics, Springer, 2004, in press.
[2] Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginarî, Math. Ann., Volume 40 (1892) no. 3, pp. 332-412 (MR 1510727)
[3] Cohomology of Groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, 1982
[4] A new cohomology theory of orbifold, Comm. Math. Phys., Volume 248 (2004) no. 1, pp. 1-31
[5] Groups Acting on Hyperbolic Space, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998 MR 1483315 (98g:11058)
[6] Algebraic Theory of the Bianchi Groups, Monographs and Textbooks in Pure and Applied Mathematics, vol. 129, Marcel Dekker Inc., New York, 1989 MR 1010229 (90h:20002)
[7] Operator K-theory for the group
[8] The Arithmetic of Hyperbolic 3-manifolds, Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York, 2003 MR 1937957 (2004i:57021)
[9] Les groupes kleinéens, Mémoire, Acta Math., Volume 3 (1966) no. 1, pp. 49-92 (MR 1554613)
[10] A.D. Rahm, Bianchi.gp, Open source program (GNU general public license), 2010. Available at http://tel.archives-ouvertes.fr/tel-00526976/ this program computes a fundamental domain for the Bianchi groups in hyperbolic 3-space, the associated quotient space and essential information about the integral homology of the Bianchi groups.
[11] A.D. Rahm, (Co)homologies and K-theory of Bianchi groups using computational geometric models, PhD thesis, Institut Fourier, Université de Grenoble et Universität Göttingen, soutenue le 15 octobre 2010, http://tel.archives-ouvertes.fr/tel-00526976/.
[12] The integral homology of
[13] The integral homology of
- On the equivariant
- and -homology of some special linear groups, Algebraic Geometric Topology, Volume 21 (2021) no. 7, pp. 3483-3512 | DOI:10.2140/agt.2021.21.3483 | Zbl:1509.19010 - The mod 2 cohomology rings of congruence subgroups in the Bianchi groups, Journal of Algebraic Combinatorics, Volume 52 (2020) no. 4, pp. 527-560 | DOI:10.1007/s10801-019-00912-8 | Zbl:1472.11164
- Hecke operators in
-theory and the -homology of Bianchi groups, Journal of Noncommutative Geometry, Volume 14 (2020) no. 1, pp. 125-189 | DOI:10.4171/jncg/361 | Zbl:1473.11112 - Evolution of ambiguous numbers under the actions of a Bianchi group, Journal of Taibah University for Science, Volume 14 (2020) no. 1, p. 615 | DOI:10.1080/16583655.2020.1760511
- Genuine Bianchi modular forms of higher level at varying weight and discriminant, Journal de Théorie des Nombres de Bordeaux, Volume 31 (2019) no. 1, pp. 27-48 | DOI:10.5802/jtnb.1067 | Zbl:1466.11027
- On the equivariant
-homology of of the imaginary quadratic integers, Annales de l'Institut Fourier, Volume 66 (2016) no. 4, pp. 1667-1689 | DOI:10.5802/aif.3047 | Zbl:1360.55007 - The mod 2 cohomology rings of
of the imaginary quadratic integers. With an appendix by Aurel Page, Journal of Pure and Applied Algebra, Volume 220 (2016) no. 3, pp. 944-975 | DOI:10.1016/j.jpaa.2015.08.002 | Zbl:1401.11100 - Arithmetic aspects of Bianchi groups, Computations with modular forms. Proceedings of a summer school and conference, Heidelberg, Germany, August–September 2011, Cham: Springer, 2014, pp. 279-315 | DOI:10.1007/978-3-319-03847-6_11 | Zbl:1375.11039
- A refined Bloch group and the third homology of
of a field, Journal of Pure and Applied Algebra, Volume 217 (2013) no. 11, pp. 2003-2035 | DOI:10.1016/j.jpaa.2013.01.001 | Zbl:1281.19003 - On level one cuspidal Bianchi modular forms, LMS Journal of Computation and Mathematics, Volume 16 (2013), pp. 187-199 | DOI:10.1112/s1461157013000053 | Zbl:1294.11062
- Higher torsion in the abelianization of the full Bianchi groups, LMS Journal of Computation and Mathematics, Volume 16 (2013), pp. 344-365 | DOI:10.1112/s1461157013000168 | Zbl:1328.11057
- The homological torsion of
of the imaginary quadratic integers, Transactions of the American Mathematical Society, Volume 365 (2013) no. 3, pp. 1603-1635 | DOI:10.1090/s0002-9947-2012-05690-x | Zbl:1307.11065
Cité par 12 documents. Sources : Crossref, zbMATH
Commentaires - Politique