Comptes Rendus
Partial Differential Equations
Barenblatt profiles for a nonlocal porous medium equation
Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 641-645.

We study a generalization of the porous medium equation involving nonlocal terms. More precisely, explicit self-similar solutions with compact support generalizing the Barenblatt solutions are constructed. We also present a formal argument to get the Lp decay of weak solutions of the corresponding Cauchy problem.

Cette Note est consacrée à lʼétude dʼune généralisation non locale de lʼéquation des milieux poreux. Plus précisément, on obtient des formules explicites de solutions auto-similaires à support compact qui ressemblent fortement aux solutions de type Barenblatt. On donne aussi un argument formel qui permet dʼobtenir des estimations Lp des solutions faibles du problème de Cauchy.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.06.003

Piotr Biler 1; Cyril Imbert 2; Grzegorz Karch 1

1 Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
2 Université Paris-Dauphine, CEREMADE (UMR CNRS 7534), place de Lattre de Tassigny, 75775 Paris cedex 16, France
@article{CRMATH_2011__349_11-12_641_0,
     author = {Piotr Biler and Cyril Imbert and Grzegorz Karch},
     title = {Barenblatt profiles for a nonlocal porous medium equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {641--645},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.003},
     language = {en},
}
TY  - JOUR
AU  - Piotr Biler
AU  - Cyril Imbert
AU  - Grzegorz Karch
TI  - Barenblatt profiles for a nonlocal porous medium equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 641
EP  - 645
VL  - 349
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2011.06.003
LA  - en
ID  - CRMATH_2011__349_11-12_641_0
ER  - 
%0 Journal Article
%A Piotr Biler
%A Cyril Imbert
%A Grzegorz Karch
%T Barenblatt profiles for a nonlocal porous medium equation
%J Comptes Rendus. Mathématique
%D 2011
%P 641-645
%V 349
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2011.06.003
%G en
%F CRMATH_2011__349_11-12_641_0
Piotr Biler; Cyril Imbert; Grzegorz Karch. Barenblatt profiles for a nonlocal porous medium equation. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 641-645. doi : 10.1016/j.crma.2011.06.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.003/

[1] P. Biler; G. Karch; R. Monneau A nonlinear diffusion of dislocation density and self-similar solutions, Comm. Math. Phys., Volume 294 (2010), pp. 145-168

[2] P. Biler, C. Imbert, G. Karch, Nonlocal porous medium equation: Barenblatt profiles and other weak solutions, in preparation, 2011.

[3] L. Caffarelli, J.L. Vázquez, Nonlinear porous medium flow with fractional potential pressure, preprint , Arch. Rational Mech. Anal., , in press. | arXiv | DOI

[4] L. Caffarelli; J.L. Vázquez Asymptotic behavior of a porous medium equation with fractional diffusion, Discrete Contin. Dynam. Systems, Volume 29 (2011), pp. 1393-1404

[5] J.A. Carrillo; A. Jüngel; P.A. Markowich; G. Toscani; A. Unterreiter Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., Volume 133 (2001), pp. 1-82

[6] R.K. Getoor First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., Volume 101 (1961), pp. 75-90

[7] C. Imbert, A. Mellet, A higher order non-local equation appearing in crack dynamics, preprint , 2010. | arXiv

[8] G. Karch; C. Miao; X. Xu On the convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal., Volume 39 (2008), pp. 1536-1549

[9] N.S. Landkof Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972

[10] V.A. Liskevich; Yu.A. Semenov Some problems on Markov semigroups, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., vol. 11, Akademie Verlag, Berlin, 1996, pp. 163-217

[11] W. Magnus; F. Oberhettinger; R.P. Soni Formulas and Theorems for the Special Functions of Mathematical Physics, Die Grundlehren der mathematischen Wissenschaften, vol. 52, Springer-Verlag New York, Inc., New York, 1966

[12] E.M. Stein Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970

[13] J.L. Vázquez The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, Oxford Science Publications, Oxford University Press, Oxford, 2007

[14] J.L. Vázquez Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and Its Applications, vol. 33, Oxford University Press, Oxford, 2006

Cited by Sources:

Comments - Policy