[Solutions auto-similaires pour une équation des milieux poreux non locale]
We study a generalization of the porous medium equation involving nonlocal terms. More precisely, explicit self-similar solutions with compact support generalizing the Barenblatt solutions are constructed. We also present a formal argument to get the
Cette Note est consacrée à lʼétude dʼune généralisation non locale de lʼéquation des milieux poreux. Plus précisément, on obtient des formules explicites de solutions auto-similaires à support compact qui ressemblent fortement aux solutions de type Barenblatt. On donne aussi un argument formel qui permet dʼobtenir des estimations
Accepté le :
Publié le :
Piotr Biler 1 ; Cyril Imbert 2 ; Grzegorz Karch 1
@article{CRMATH_2011__349_11-12_641_0, author = {Piotr Biler and Cyril Imbert and Grzegorz Karch}, title = {Barenblatt profiles for a nonlocal porous medium equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {641--645}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.06.003}, language = {en}, }
TY - JOUR AU - Piotr Biler AU - Cyril Imbert AU - Grzegorz Karch TI - Barenblatt profiles for a nonlocal porous medium equation JO - Comptes Rendus. Mathématique PY - 2011 SP - 641 EP - 645 VL - 349 IS - 11-12 PB - Elsevier DO - 10.1016/j.crma.2011.06.003 LA - en ID - CRMATH_2011__349_11-12_641_0 ER -
Piotr Biler; Cyril Imbert; Grzegorz Karch. Barenblatt profiles for a nonlocal porous medium equation. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 641-645. doi : 10.1016/j.crma.2011.06.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.003/
[1] A nonlinear diffusion of dislocation density and self-similar solutions, Comm. Math. Phys., Volume 294 (2010), pp. 145-168
[2] P. Biler, C. Imbert, G. Karch, Nonlocal porous medium equation: Barenblatt profiles and other weak solutions, in preparation, 2011.
[3] L. Caffarelli, J.L. Vázquez, Nonlinear porous medium flow with fractional potential pressure, preprint , Arch. Rational Mech. Anal., , in press. | arXiv | DOI
[4] Asymptotic behavior of a porous medium equation with fractional diffusion, Discrete Contin. Dynam. Systems, Volume 29 (2011), pp. 1393-1404
[5] Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., Volume 133 (2001), pp. 1-82
[6] First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., Volume 101 (1961), pp. 75-90
[7] C. Imbert, A. Mellet, A higher order non-local equation appearing in crack dynamics, preprint , 2010. | arXiv
[8] On the convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal., Volume 39 (2008), pp. 1536-1549
[9] Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972
[10] Some problems on Markov semigroups, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., vol. 11, Akademie Verlag, Berlin, 1996, pp. 163-217
[11] Formulas and Theorems for the Special Functions of Mathematical Physics, Die Grundlehren der mathematischen Wissenschaften, vol. 52, Springer-Verlag New York, Inc., New York, 1966
[12] Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970
[13] The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, Oxford Science Publications, Oxford University Press, Oxford, 2007
[14] Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and Its Applications, vol. 33, Oxford University Press, Oxford, 2006
- Gradient flow solutions for porous medium equations with nonlocal Lévy-type pressure, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 3 | DOI:10.1007/s00526-025-02942-6
- Expansion into the vacuum of stochastic gases with long-range interactions, Physical Review E, Volume 111 (2025) no. 6 | DOI:10.1103/physreve.111.064109
- A numerical scheme for doubly nonlocal conservation laws, Calcolo, Volume 61 (2024) no. 4 | DOI:10.1007/s10092-024-00624-x
- On the global existence and analyticity of the mild solution for the fractional Porous medium equation, Boundary Value Problems, Volume 2023 (2023) no. 1 | DOI:10.1186/s13661-023-01794-3
- Analysis and mean-field derivation of a porous-medium equation with fractional diffusion, Communications in Partial Differential Equations, Volume 47 (2022) no. 11, p. 2217 | DOI:10.1080/03605302.2022.2118608
- Uniqueness of centers of nearly spherical bodies, Mathematika, Volume 68 (2022) no. 4, p. 1268 | DOI:10.1112/mtk.12166
- Exact solutions for viscous Marangoni spreading, Physical Review E, Volume 106 (2022) no. 4 | DOI:10.1103/physreve.106.045107
- Global Well-Posedness and Analyticity of Generalized Porous Medium Equation in Fourier-Besov-Morrey Spaces with Variable Exponent, Mathematics, Volume 9 (2021) no. 5, p. 498 | DOI:10.3390/math9050498
- On a Space-Fractional Generalization of the Black Oil Model, Mathematics and Mathematical Modeling (2021) no. 6, p. 13 | DOI:10.24108/mathm.0620.0000228
- Renormalized solutions for convection-diffusion problems involving a nonlocal operator, Nonlinear Differential Equations and Applications NoDEA, Volume 28 (2021) no. 5 | DOI:10.1007/s00030-021-00713-8
- Barenblatt-like approach to transport processes in meningeal lymphatic vessel’s dynamics, The European Physical Journal Plus, Volume 136 (2021) no. 5 | DOI:10.1140/epjp/s13360-021-01481-1
- Nonlocal dissipation measure and L1 kinetic theory for fractional conservation laws, Communications in Partial Differential Equations, Volume 45 (2020) no. 9, p. 1213 | DOI:10.1080/03605302.2020.1768542
- Mean field limit for Coulomb-type flows, Duke Mathematical Journal, Volume 169 (2020) no. 15 | DOI:10.1215/00127094-2020-0019
- Alternative probabilistic representations of Barenblatt-type solutions, Modern Stochastics: Theory and Applications (2020), p. 97 | DOI:10.15559/20-vmsta151
- A Framework for Nonlocal, Nonlinear Initial Value Problems, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 3, p. 2383 | DOI:10.1137/19m124143x
- Symmetry Group Classification and Conservation Laws of the Nonlinear Fractional Diffusion Equation with the Riesz Potential, Symmetry, Volume 12 (2020) no. 1, p. 178 | DOI:10.3390/sym12010178
- On fractional and fractal formulations of gradient linear and nonlinear elasticity, Acta Mechanica, Volume 230 (2019) no. 6, p. 2043 | DOI:10.1007/s00707-019-2373-x
- Porous Medium Equation with Nonlocal Pressure, Current Research in Nonlinear Analysis, Volume 135 (2018), p. 277 | DOI:10.1007/978-3-319-89800-1_12
- Stochastic models associated to a Nonlocal Porous Medium Equation, Modern Stochastics: Theory and Applications (2018), p. 457 | DOI:10.15559/18-vmsta112
- Flows and functional inequalities for fractional operators, Applicable Analysis, Volume 96 (2017) no. 9, p. 1547 | DOI:10.1080/00036811.2017.1286647
- Fractional Laplace Operator and Meijer G-function, Constructive Approximation, Volume 45 (2017) no. 3, p. 427 | DOI:10.1007/s00365-016-9336-4
- Dynamics for a non-autonomous reaction diffusion model with the fractional diffusion, Discrete Continuous Dynamical Systems - A, Volume 37 (2017) no. 12, p. 6035 | DOI:10.3934/dcds.2017260
- Eigenvalues of the fractional Laplace operator in the unit ball, Journal of the London Mathematical Society, Volume 95 (2017) no. 2, p. 500 | DOI:10.1112/jlms.12024
- The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Volume 2186 (2017), p. 205 | DOI:10.1007/978-3-319-61494-6_5
- Finite and infinite speed of propagation for porous medium equations with nonlocal pressure, Journal of Differential Equations, Volume 260 (2016) no. 2, p. 1154 | DOI:10.1016/j.jde.2015.09.023
- The Dirichlet problem for the fractional p-Laplacian evolution equation, Journal of Differential Equations, Volume 260 (2016) no. 7, p. 6038 | DOI:10.1016/j.jde.2015.12.033
- The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions, Archive for Rational Mechanics and Analysis, Volume 215 (2015) no. 2, p. 497 | DOI:10.1007/s00205-014-0786-1
- Fractional porous media equations: existence and uniqueness of weak solutions with measure data, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 3, p. 3303 | DOI:10.1007/s00526-015-0904-4
- Self-Similar Solutions for a Fractional Thin Film Equation Governing Hydraulic Fractures, Communications in Mathematical Physics, Volume 340 (2015) no. 3, p. 1187 | DOI:10.1007/s00220-015-2459-9
- Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure, Journal of Differential Equations, Volume 258 (2015) no. 3, p. 736 | DOI:10.1016/j.jde.2014.10.003
- Study of a family of higher order nonlocal degenerate parabolic equations: From the porous medium equation to the thin film equation, Journal of Differential Equations, Volume 259 (2015) no. 11, p. 5782 | DOI:10.1016/j.jde.2015.07.008
- Some free boundary problems involving non-local diffusion and aggregation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 373 (2015) no. 2050, p. 20140275 | DOI:10.1098/rsta.2014.0275
- Explicit Barenblatt profiles for fractional porous medium equations, Bulletin of the London Mathematical Society, Volume 46 (2014) no. 4, p. 857 | DOI:10.1112/blms/bdu045
- A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators, Calculus of Variations and Partial Differential Equations, Volume 49 (2014) no. 3-4, p. 1091 | DOI:10.1007/s00526-013-0613-9
- Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Continuous Dynamical Systems - S, Volume 7 (2014) no. 4, p. 857 | DOI:10.3934/dcdss.2014.7.857
- On the Cauchy problem for a general fractional porous medium equation with variable density, Nonlinear Analysis: Theory, Methods Applications, Volume 98 (2014), p. 27 | DOI:10.1016/j.na.2013.12.007
- Numerical Methods for the Fractional Laplacian: A Finite Difference-Quadrature Approach, SIAM Journal on Numerical Analysis, Volume 52 (2014) no. 6, p. 3056 | DOI:10.1137/140954040
- Application of the nonlocal Darcy law to the propagation of nonlinear thermoelastic waves in fluid saturated porous media, Physica D: Nonlinear Phenomena, Volume 250 (2013), p. 52 | DOI:10.1016/j.physd.2013.01.014
- Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fractional Calculus and Applied Analysis, Volume 15 (2012) no. 4, p. 536 | DOI:10.2478/s13540-012-0038-8
- Continuous Dependence Estimates for Nonlinear Fractional Convection-diffusion Equations, SIAM Journal on Mathematical Analysis, Volume 44 (2012) no. 2, p. 603 | DOI:10.1137/110834342
Cité par 40 documents. Sources : Crossref
Commentaires - Politique