Comptes Rendus
Partial Differential Equations
Barenblatt profiles for a nonlocal porous medium equation
[Solutions auto-similaires pour une équation des milieux poreux non locale]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 641-645.

We study a generalization of the porous medium equation involving nonlocal terms. More precisely, explicit self-similar solutions with compact support generalizing the Barenblatt solutions are constructed. We also present a formal argument to get the Lp decay of weak solutions of the corresponding Cauchy problem.

Cette Note est consacrée à lʼétude dʼune généralisation non locale de lʼéquation des milieux poreux. Plus précisément, on obtient des formules explicites de solutions auto-similaires à support compact qui ressemblent fortement aux solutions de type Barenblatt. On donne aussi un argument formel qui permet dʼobtenir des estimations Lp des solutions faibles du problème de Cauchy.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.06.003

Piotr Biler 1 ; Cyril Imbert 2 ; Grzegorz Karch 1

1 Instytut Matematyczny, Uniwersytet Wrocławski, pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland
2 Université Paris-Dauphine, CEREMADE (UMR CNRS 7534), place de Lattre de Tassigny, 75775 Paris cedex 16, France
@article{CRMATH_2011__349_11-12_641_0,
     author = {Piotr Biler and Cyril Imbert and Grzegorz Karch},
     title = {Barenblatt profiles for a nonlocal porous medium equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {641--645},
     publisher = {Elsevier},
     volume = {349},
     number = {11-12},
     year = {2011},
     doi = {10.1016/j.crma.2011.06.003},
     language = {en},
}
TY  - JOUR
AU  - Piotr Biler
AU  - Cyril Imbert
AU  - Grzegorz Karch
TI  - Barenblatt profiles for a nonlocal porous medium equation
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 641
EP  - 645
VL  - 349
IS  - 11-12
PB  - Elsevier
DO  - 10.1016/j.crma.2011.06.003
LA  - en
ID  - CRMATH_2011__349_11-12_641_0
ER  - 
%0 Journal Article
%A Piotr Biler
%A Cyril Imbert
%A Grzegorz Karch
%T Barenblatt profiles for a nonlocal porous medium equation
%J Comptes Rendus. Mathématique
%D 2011
%P 641-645
%V 349
%N 11-12
%I Elsevier
%R 10.1016/j.crma.2011.06.003
%G en
%F CRMATH_2011__349_11-12_641_0
Piotr Biler; Cyril Imbert; Grzegorz Karch. Barenblatt profiles for a nonlocal porous medium equation. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 641-645. doi : 10.1016/j.crma.2011.06.003. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.003/

[1] P. Biler; G. Karch; R. Monneau A nonlinear diffusion of dislocation density and self-similar solutions, Comm. Math. Phys., Volume 294 (2010), pp. 145-168

[2] P. Biler, C. Imbert, G. Karch, Nonlocal porous medium equation: Barenblatt profiles and other weak solutions, in preparation, 2011.

[3] L. Caffarelli, J.L. Vázquez, Nonlinear porous medium flow with fractional potential pressure, preprint , Arch. Rational Mech. Anal., , in press. | arXiv | DOI

[4] L. Caffarelli; J.L. Vázquez Asymptotic behavior of a porous medium equation with fractional diffusion, Discrete Contin. Dynam. Systems, Volume 29 (2011), pp. 1393-1404

[5] J.A. Carrillo; A. Jüngel; P.A. Markowich; G. Toscani; A. Unterreiter Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities, Monatsh. Math., Volume 133 (2001), pp. 1-82

[6] R.K. Getoor First passage times for symmetric stable processes in space, Trans. Amer. Math. Soc., Volume 101 (1961), pp. 75-90

[7] C. Imbert, A. Mellet, A higher order non-local equation appearing in crack dynamics, preprint , 2010. | arXiv

[8] G. Karch; C. Miao; X. Xu On the convergence of solutions of fractal Burgers equation toward rarefaction waves, SIAM J. Math. Anal., Volume 39 (2008), pp. 1536-1549

[9] N.S. Landkof Foundations of Modern Potential Theory, Die Grundlehren der mathematischen Wissenschaften, vol. 180, Springer-Verlag, Berlin–Heidelberg–New York, 1972

[10] V.A. Liskevich; Yu.A. Semenov Some problems on Markov semigroups, Schrödinger Operators, Markov Semigroups, Wavelet Analysis, Operator Algebras, Math. Top., vol. 11, Akademie Verlag, Berlin, 1996, pp. 163-217

[11] W. Magnus; F. Oberhettinger; R.P. Soni Formulas and Theorems for the Special Functions of Mathematical Physics, Die Grundlehren der mathematischen Wissenschaften, vol. 52, Springer-Verlag New York, Inc., New York, 1966

[12] E.M. Stein Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970

[13] J.L. Vázquez The Porous Medium Equation. Mathematical Theory, Oxford Mathematical Monographs, Oxford Science Publications, Oxford University Press, Oxford, 2007

[14] J.L. Vázquez Smoothing and Decay Estimates for Nonlinear Diffusion Equations: Equations of Porous Medium Type, Oxford Lecture Series in Mathematics and Its Applications, vol. 33, Oxford University Press, Oxford, 2006

  • Guy Foghem; David Padilla-Garza; Markus Schmidtchen Gradient flow solutions for porous medium equations with nonlocal Lévy-type pressure, Calculus of Variations and Partial Differential Equations, Volume 64 (2025) no. 3 | DOI:10.1007/s00526-025-02942-6
  • P. L. Krapivsky; Kirone Mallick Expansion into the vacuum of stochastic gases with long-range interactions, Physical Review E, Volume 111 (2025) no. 6 | DOI:10.1103/physreve.111.064109
  • E. Abreu; J. C. Valencia-Guevara; M. Huacasi-Machaca; J. Pérez A numerical scheme for doubly nonlocal conservation laws, Calcolo, Volume 61 (2024) no. 4 | DOI:10.1007/s10092-024-00624-x
  • Muhammad Zainul Abidin; Muhammad Marwan On the global existence and analyticity of the mild solution for the fractional Porous medium equation, Boundary Value Problems, Volume 2023 (2023) no. 1 | DOI:10.1186/s13661-023-01794-3
  • Li Chen; Alexandra Holzinger; Ansgar Jüngel; Nicola Zamponi Analysis and mean-field derivation of a porous-medium equation with fractional diffusion, Communications in Partial Differential Equations, Volume 47 (2022) no. 11, p. 2217 | DOI:10.1080/03605302.2022.2118608
  • Jun O'Hara Uniqueness of centers of nearly spherical bodies, Mathematika, Volume 68 (2022) no. 4, p. 1268 | DOI:10.1112/mtk.12166
  • Thomas Bickel; François Detcheverry Exact solutions for viscous Marangoni spreading, Physical Review E, Volume 106 (2022) no. 4 | DOI:10.1103/physreve.106.045107
  • Muhammad Zainul Abidin; Jiecheng Chen Global Well-Posedness and Analyticity of Generalized Porous Medium Equation in Fourier-Besov-Morrey Spaces with Variable Exponent, Mathematics, Volume 9 (2021) no. 5, p. 498 | DOI:10.3390/math9050498
  • N. S. Belevtsov On a Space-Fractional Generalization of the Black Oil Model, Mathematics and Mathematical Modeling (2021) no. 6, p. 13 | DOI:10.24108/mathm.0620.0000228
  • Adama Ouédraogo; Dofyniwassouani Alain Houede; Idrissa Ibrango Renormalized solutions for convection-diffusion problems involving a nonlocal operator, Nonlinear Differential Equations and Applications NoDEA, Volume 28 (2021) no. 5 | DOI:10.1007/s00030-021-00713-8
  • Anastasia I. Lavrova; Eugene B. Postnikov Barenblatt-like approach to transport processes in meningeal lymphatic vessel’s dynamics, The European Physical Journal Plus, Volume 136 (2021) no. 5 | DOI:10.1140/epjp/s13360-021-01481-1
  • Nathaël Alibaud; Boris Andreianov; Adama Ouédraogo Nonlocal dissipation measure and L1 kinetic theory for fractional conservation laws, Communications in Partial Differential Equations, Volume 45 (2020) no. 9, p. 1213 | DOI:10.1080/03605302.2020.1768542
  • Sylvia Serfaty Mean field limit for Coulomb-type flows, Duke Mathematical Journal, Volume 169 (2020) no. 15 | DOI:10.1215/00127094-2020-0019
  • Alessandro De Gregorio; Roberto Garra Alternative probabilistic representations of Barenblatt-type solutions, Modern Stochastics: Theory and Applications (2020), p. 97 | DOI:10.15559/20-vmsta151
  • Grzegorz Karch; Moritz Kassmann; Miłosz Krupski A Framework for Nonlocal, Nonlinear Initial Value Problems, SIAM Journal on Mathematical Analysis, Volume 52 (2020) no. 3, p. 2383 | DOI:10.1137/19m124143x
  • Nikita S. Belevtsov; Stanislav Yu. Lukashchuk Symmetry Group Classification and Conservation Laws of the Nonlinear Fractional Diffusion Equation with the Riesz Potential, Symmetry, Volume 12 (2020) no. 1, p. 178 | DOI:10.3390/sym12010178
  • Vasily E. Tarasov; Elias C. Aifantis On fractional and fractal formulations of gradient linear and nonlinear elasticity, Acta Mechanica, Volume 230 (2019) no. 6, p. 2043 | DOI:10.1007/s00707-019-2373-x
  • Diana Stan; Félix del Teso; Juan Luis Vázquez Porous Medium Equation with Nonlocal Pressure, Current Research in Nonlinear Analysis, Volume 135 (2018), p. 277 | DOI:10.1007/978-3-319-89800-1_12
  • Alessandro De Gregorio Stochastic models associated to a Nonlocal Porous Medium Equation, Modern Stochastics: Theory and Applications (2018), p. 457 | DOI:10.15559/18-vmsta112
  • Jean Dolbeault; An Zhang Flows and functional inequalities for fractional operators, Applicable Analysis, Volume 96 (2017) no. 9, p. 1547 | DOI:10.1080/00036811.2017.1286647
  • Bartłomiej Dyda; Alexey Kuznetsov; Mateusz Kwaśnicki Fractional Laplace Operator and Meijer G-function, Constructive Approximation, Volume 45 (2017) no. 3, p. 427 | DOI:10.1007/s00365-016-9336-4
  • Wen Tan; Chunyou Sun Dynamics for a non-autonomous reaction diffusion model with the fractional diffusion, Discrete Continuous Dynamical Systems - A, Volume 37 (2017) no. 12, p. 6035 | DOI:10.3934/dcds.2017260
  • Bartłomiej Dyda; Alexey Kuznetsov; Mateusz Kwaśnicki Eigenvalues of the fractional Laplace operator in the unit ball, Journal of the London Mathematical Society, Volume 95 (2017) no. 2, p. 500 | DOI:10.1112/jlms.12024
  • Juan Luis Vázquez The Mathematical Theories of Diffusion: Nonlinear and Fractional Diffusion, Nonlocal and Nonlinear Diffusions and Interactions: New Methods and Directions, Volume 2186 (2017), p. 205 | DOI:10.1007/978-3-319-61494-6_5
  • Diana Stan; Félix del Teso; Juan Luis Vázquez Finite and infinite speed of propagation for porous medium equations with nonlocal pressure, Journal of Differential Equations, Volume 260 (2016) no. 2, p. 1154 | DOI:10.1016/j.jde.2015.09.023
  • Juan Luis Vázquez The Dirichlet problem for the fractional p-Laplacian evolution equation, Journal of Differential Equations, Volume 260 (2016) no. 7, p. 6038 | DOI:10.1016/j.jde.2015.12.033
  • Piotr Biler; Cyril Imbert; Grzegorz Karch The Nonlocal Porous Medium Equation: Barenblatt Profiles and Other Weak Solutions, Archive for Rational Mechanics and Analysis, Volume 215 (2015) no. 2, p. 497 | DOI:10.1007/s00205-014-0786-1
  • Gabriele Grillo; Matteo Muratori; Fabio Punzo Fractional porous media equations: existence and uniqueness of weak solutions with measure data, Calculus of Variations and Partial Differential Equations, Volume 54 (2015) no. 3, p. 3303 | DOI:10.1007/s00526-015-0904-4
  • C. Imbert; A. Mellet Self-Similar Solutions for a Fractional Thin Film Equation Governing Hydraulic Fractures, Communications in Mathematical Physics, Volume 340 (2015) no. 3, p. 1187 | DOI:10.1007/s00220-015-2459-9
  • J.A. Carrillo; Y. Huang; M.C. Santos; J.L. Vázquez Exponential convergence towards stationary states for the 1D porous medium equation with fractional pressure, Journal of Differential Equations, Volume 258 (2015) no. 3, p. 736 | DOI:10.1016/j.jde.2014.10.003
  • Rana Tarhini Study of a family of higher order nonlocal degenerate parabolic equations: From the porous medium equation to the thin film equation, Journal of Differential Equations, Volume 259 (2015) no. 11, p. 5782 | DOI:10.1016/j.jde.2015.07.008
  • José Antonio Carrillo; Juan Luis Vázquez Some free boundary problems involving non-local diffusion and aggregation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 373 (2015) no. 2050, p. 20140275 | DOI:10.1098/rsta.2014.0275
  • Yanghong Huang Explicit Barenblatt profiles for fractional porous medium equations, Bulletin of the London Mathematical Society, Volume 46 (2014) no. 4, p. 857 | DOI:10.1112/blms/bdu045
  • Sylvia Serfaty; Juan Luis Vázquez A mean field equation as limit of nonlinear diffusions with fractional Laplacian operators, Calculus of Variations and Partial Differential Equations, Volume 49 (2014) no. 3-4, p. 1091 | DOI:10.1007/s00526-013-0613-9
  • Juan-Luis Vázquez Recent progress in the theory of nonlinear diffusion with fractional Laplacian operators, Discrete Continuous Dynamical Systems - S, Volume 7 (2014) no. 4, p. 857 | DOI:10.3934/dcdss.2014.7.857
  • Fabio Punzo; Gabriele Terrone On the Cauchy problem for a general fractional porous medium equation with variable density, Nonlinear Analysis: Theory, Methods Applications, Volume 98 (2014), p. 27 | DOI:10.1016/j.na.2013.12.007
  • Yanghong Huang; Adam Oberman Numerical Methods for the Fractional Laplacian: A Finite Difference-Quadrature Approach, SIAM Journal on Numerical Analysis, Volume 52 (2014) no. 6, p. 3056 | DOI:10.1137/140954040
  • R. Garra; E. Salusti Application of the nonlocal Darcy law to the propagation of nonlinear thermoelastic waves in fluid saturated porous media, Physica D: Nonlinear Phenomena, Volume 250 (2013), p. 52 | DOI:10.1016/j.physd.2013.01.014
  • Bartłlomiej Dyda Fractional calculus for power functions and eigenvalues of the fractional Laplacian, Fractional Calculus and Applied Analysis, Volume 15 (2012) no. 4, p. 536 | DOI:10.2478/s13540-012-0038-8
  • Nathaël Alibaud; Simone Cifani; Espen R. Jakobsen Continuous Dependence Estimates for Nonlinear Fractional Convection-diffusion Equations, SIAM Journal on Mathematical Analysis, Volume 44 (2012) no. 2, p. 603 | DOI:10.1137/110834342

Cité par 40 documents. Sources : Crossref

Commentaires - Politique