[Fractions continues et equidistribution]
Nous obtenons des bornes en moyenne pour les quotients partiels de certaines fractions
We establish average bounds on the partial quotients of fractions
Accepté le :
Publié le :
Mei-Chu Chang 1
@article{CRMATH_2011__349_13-14_713_0, author = {Mei-Chu Chang}, title = {Partial quotients and equidistribution}, journal = {Comptes Rendus. Math\'ematique}, pages = {713--718}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.06.007}, language = {en}, }
Mei-Chu Chang. Partial quotients and equidistribution. Comptes Rendus. Mathématique, Volume 349 (2011) no. 13-14, pp. 713-718. doi : 10.1016/j.crma.2011.06.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.007/
[1] Zarembaʼs conjecture and sums of the divisor function, Math. Comput., Volume 61 (1993) no. 203, pp. 171-176
[2] On character sums and the exceptional set of a congruence problem, J. Number Theory, Volume 114 (2005), pp. 182-192
[3] Uniform Distribution of Sequences, Wiley, New York, 1974
[4] On the distribution of sequences connected with good lattice points, Monatsh. Math., Volume 101 (1986) no. 2, pp. 135-150
[5] Continued Fractions, World Scientific, 1992
[6] La méthode des « bons treillis » pour le calcul des integrales multiples (S.K. Zaremba, ed.), Applications of Number Theory to Numerical Analysis, Academic Press, New York, 1972, pp. 39-119
[7] Good lattice points modulo composite numbers, Monatsh. Math., Volume 78 (1974), pp. 446-460
Cité par Sources :
Commentaires - Politique