We establish average bounds on the partial quotients of fractions , with p prime, b taken in a multiplicative subgroup of and for “most” primitive elements b. Our result improves upon earlier work due to G. Larcher. The behavior of the partial quotients of is well known to be crucial to the statistical properties of the pseudo-congruential number generator . As a corollary, estimates on their pair correlation are refined.
Nous obtenons des bornes en moyenne pour les quotients partiels de certaines fractions , p un nombre premier, b dans un sous-groupe de ainsi que pour b un élément primitif « typique » . Ceci donne en particulier une amélioration de résultats de G. Larcher. Il est bien connu que le comportement des quotients partiels de détermine les propriétés statistiques de la distribution . On en déduit, comme corollaire, de meilleures estimations sur les corrélations partielles pour ces suites.
Accepted:
Published online:
Mei-Chu Chang 1
@article{CRMATH_2011__349_13-14_713_0, author = {Mei-Chu Chang}, title = {Partial quotients and equidistribution}, journal = {Comptes Rendus. Math\'ematique}, pages = {713--718}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.06.007}, language = {en}, }
Mei-Chu Chang. Partial quotients and equidistribution. Comptes Rendus. Mathématique, Volume 349 (2011) no. 13-14, pp. 713-718. doi : 10.1016/j.crma.2011.06.007. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.007/
[1] Zarembaʼs conjecture and sums of the divisor function, Math. Comput., Volume 61 (1993) no. 203, pp. 171-176
[2] On character sums and the exceptional set of a congruence problem, J. Number Theory, Volume 114 (2005), pp. 182-192
[3] Uniform Distribution of Sequences, Wiley, New York, 1974
[4] On the distribution of sequences connected with good lattice points, Monatsh. Math., Volume 101 (1986) no. 2, pp. 135-150
[5] Continued Fractions, World Scientific, 1992
[6] La méthode des « bons treillis » pour le calcul des integrales multiples (S.K. Zaremba, ed.), Applications of Number Theory to Numerical Analysis, Academic Press, New York, 1972, pp. 39-119
[7] Good lattice points modulo composite numbers, Monatsh. Math., Volume 78 (1974), pp. 446-460
Cited by Sources:
Comments - Policy