[Sur le comportement modulaire du produit infini
Soit
Let
Accepté le :
Publié le :
Changgui Zhang 1
@article{CRMATH_2011__349_13-14_725_0, author = {Changgui Zhang}, title = {On the modular behaviour of the infinite product $ (1-x)(1-xq)(1-x{q}^{2})(1-x{q}^{3})\cdots $}, journal = {Comptes Rendus. Math\'ematique}, pages = {725--730}, publisher = {Elsevier}, volume = {349}, number = {13-14}, year = {2011}, doi = {10.1016/j.crma.2011.06.019}, language = {en}, }
TY - JOUR AU - Changgui Zhang TI - On the modular behaviour of the infinite product $ (1-x)(1-xq)(1-x{q}^{2})(1-x{q}^{3})\cdots $ JO - Comptes Rendus. Mathématique PY - 2011 SP - 725 EP - 730 VL - 349 IS - 13-14 PB - Elsevier DO - 10.1016/j.crma.2011.06.019 LA - en ID - CRMATH_2011__349_13-14_725_0 ER -
Changgui Zhang. On the modular behaviour of the infinite product $ (1-x)(1-xq)(1-x{q}^{2})(1-x{q}^{3})\cdots $. Comptes Rendus. Mathématique, Volume 349 (2011) no. 13-14, pp. 725-730. doi : 10.1016/j.crma.2011.06.019. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.019/
[1] Modular Functions and Dirichlet Series in Number Theory, Gradute Texts in Mathematics, vol. 41, Springer-Verlag, New York, 1990
[2] The Theory of Partitions, Cambridge University Press, Cambridge, 1976
[3] Special Functions, Cambridge University Press, 2000
[4] The theory of the double gamma function, Phil. Trans. R. Soc. Lond. A, Volume 196 (1901), pp. 265-388
[5] Ramanujanʼs Notebooks, Part IV, Springer-Verlag, New York, 1994
[6] On q-summation and confluence, Ann. Inst. Fourier, Volume 59 (2009), pp. 347-392
[7] L. Euler, Introducio in Analysin Infinitorum, 1748.
[8] Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, Chelsea Publishing Company, New York, 1940 (originally published by Cambridge University Press)
[9] Asymptotic expansions of certain q-series and a formula of Ramanujan for specific values of the Riemann zeta function, Acta Arith., Volume 107 (2003) no. 3, pp. 269-298
[10] Notebooks (2 volumes), Tata Institute of Fundamental Research, Bombay, 1957
[11] Séries divergentes et théories asymptotiques, Bull. Soc. Math. France, Volume 121 (1993)
[12] Local analytic classification of q-difference equations | arXiv
[13] Reflections on Ramanujan centenary (B.C. Berndt; R.A. Rankin, eds.), Ramanujan: Essays and Surveys, History of Mathematics, vol. 22, 1989, pp. 203-214
[14] Cours dʼarithmétique, Deuxième édition revue et corrigé, Presses Universitaires de France, Paris, 1977
[15] On a Kronecker limit formula for real quadratic fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Volume 24 (1977) no. 1, pp. 167-199
[16] , Ann. Sci. École Norm. Sup. (3) (Colleted Papers, vol. II), Volume 3, Springer-Verlag, New York, 1886, pp. 201-258 (See also:, 1993)
[17] A Course of Modern Analysis, Cambridge University Press, New York, 1962
[18] The dilogarithm function in geometry and number theory, Tata Inst. Fund. Res., Bombay (Tata Inst. Fund. Res. Stud. Math.), Volume vol. 12, Oxford University Press, Oxford (1989), pp. 231-249
[19] Une sommation discrète pour des équations aux q-différences linéaires et à coefficients analytiques : théorie générale et exemples (B.L.J. Braaksma et al., eds.), Differential Equations and the Stokes Phenomenon, World Scientific, 2002, pp. 309-329
[20] A modular type formula for Euler infinite product
- On Theta-Type Functions in the Form (x; q)∞, Acta Mathematica Scientia, Volume 41 (2021) no. 6, p. 2086 | DOI:10.1007/s10473-021-0617-z
- A modular-type formula for
( x ; q ) ∞, The Ramanujan Journal, Volume 46 (2018) no. 1, p. 269 | DOI:10.1007/s11139-017-9967-5
Cité par 2 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier