The Note is concerned with an inverse source problem for the Helmholtz equation, which determines the source from measurements of the radiated field away at multiple frequencies. Our main result is a novel stability estimate for the inverse source problem. Our result indicates that the ill-posedness of the inverse problem decreases as the frequency increases. Computationally, a continuation method is introduced to solve the inverse problem by capturing both the macro and the small scales of the source function. A numerical example is presented to demonstrate the efficiency of the method.
Dans cette Note on considère un problème inverse de source pour lʼéquation de Helmholtz. Il consiste à déterminer la fonction source à partir du champ radié loin de la source, et à des multiples fréquences. On donne une nouvelle estimation de stabilité qui montre que la résolution dans la reconstruction de la source sʼaméliore avec lʼaugmentation de la fréquence. Ensuite, on propose une méthode de continuation pour résoudre numériquement le problème inverse. Cette méthode permet de capturer à la fois les détails fins et grossiers de la source. Un résultat numérique est présenté afin de montrer lʼefficacité de la méthode.
Accepted:
Published online:
Gang Bao 1, 2; Junshan Lin 2; Faouzi Triki 3
@article{CRMATH_2011__349_15-16_855_0, author = {Gang Bao and Junshan Lin and Faouzi Triki}, title = {An inverse source problem with multiple frequency data}, journal = {Comptes Rendus. Math\'ematique}, pages = {855--859}, publisher = {Elsevier}, volume = {349}, number = {15-16}, year = {2011}, doi = {10.1016/j.crma.2011.07.009}, language = {en}, }
Gang Bao; Junshan Lin; Faouzi Triki. An inverse source problem with multiple frequency data. Comptes Rendus. Mathématique, Volume 349 (2011) no. 15-16, pp. 855-859. doi : 10.1016/j.crma.2011.07.009. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.07.009/
[1] The inverse source problem for Maxwellʼs equations, Inverse Problems, Volume 22 (2006), pp. 1023-1035
[2] An inverse source problem for Maxwellʼs equations in magnetoencephalography, SIAM J. Appl. Math., Volume 62 (2002), pp. 1369-1382
[3] Antenna control and generalized characteristic modes, Proc. IEEE, Volume 79 (1991), pp. 1559-1568
[4] A multi-frequency inverse source problem, J. Differential Equations, Volume 249 (2010) no. 12, pp. 3443-3465
[5] Error estimates for recursive linearization of inverse medium problems, J. Comput. Math., Volume 28 (2010), pp. 725-744
[6] Nonuniqueness in the inverse source problem in acoustics and electromagnetics, J. Math. Phys., Volume 18 (1977), pp. 194-201
[7] The inverse source problem in nonhomogeneous background media, SIAM J. Appl. Math., Volume 67 (2007), pp. 1353-1378
[8] Acoustic source identification using multiple frequency information, Inverse Problems, Volume 25 (2009), p. 115005
[9] The unique determination of neuronal currents in the brain via magnetoencephalography, Inverse Problems, Volume 20 (2004), pp. 1067-1082
[10] Identification of dipole equations, Wave Motion, Volume 28 (1998), pp. 25-44
[11] An Introduction to the Mathematical Theory of Inverse Problems, Applied Mathematical Sciences, vol. 120, Springer-Verlag, New York, 1996
[12] Nonradiating sources with connections to the adjoint problem, Phys. Rev. E, Volume 70 (2004)
Cited by Sources:
Comments - Policy