Comptes Rendus
Algebraic Geometry/Differential Geometry
Holomorphic Cartan geometries on uniruled surfaces
Comptes Rendus. Mathématique, Volume 349 (2011) no. 15-16, pp. 893-896.

We classify holomorphic Cartan geometries on every compact complex surface which contains a rational curve.

Dans cette Note nous classifions les géométries de Cartan holomorphes sur toute surface complexe compacte contenant une courbe rationnelle.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.07.021

Benjamin McKay 1

1 School of Mathematical Sciences, University College Cork, Cork, Ireland
@article{CRMATH_2011__349_15-16_893_0,
     author = {Benjamin McKay},
     title = {Holomorphic {Cartan} geometries on uniruled surfaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {893--896},
     publisher = {Elsevier},
     volume = {349},
     number = {15-16},
     year = {2011},
     doi = {10.1016/j.crma.2011.07.021},
     language = {en},
}
TY  - JOUR
AU  - Benjamin McKay
TI  - Holomorphic Cartan geometries on uniruled surfaces
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 893
EP  - 896
VL  - 349
IS  - 15-16
PB  - Elsevier
DO  - 10.1016/j.crma.2011.07.021
LA  - en
ID  - CRMATH_2011__349_15-16_893_0
ER  - 
%0 Journal Article
%A Benjamin McKay
%T Holomorphic Cartan geometries on uniruled surfaces
%J Comptes Rendus. Mathématique
%D 2011
%P 893-896
%V 349
%N 15-16
%I Elsevier
%R 10.1016/j.crma.2011.07.021
%G en
%F CRMATH_2011__349_15-16_893_0
Benjamin McKay. Holomorphic Cartan geometries on uniruled surfaces. Comptes Rendus. Mathématique, Volume 349 (2011) no. 15-16, pp. 893-896. doi : 10.1016/j.crma.2011.07.021. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.07.021/

[1] Indranil Biswas; Benjamin McKay Holomorphic Cartan geometries and rational curves, May 2010 | arXiv

[2] William M. Goldman Locally homogeneous geometric manifolds (Rajendra Bhatia, ed.), Proceedings of the International Congress of Mathematicians, Hyderabad, vol. 2, Hindawi, 2010, pp. 717-744

[3] Alan T. Huckleberry The classification of homogeneous surfaces, Expo. Math., Volume 4 (1986) no. 4, pp. 289-334

[4] George Daniel Mostow The extensibility of local Lie groups of transformations and groups on surfaces, Ann. of Math. (2), Volume 52 (1950), pp. 606-636 MR 0048464 (14,18d)

[5] Peter J. Olver Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995 (MR 96i:58005)

[6] Richard W. Sharpe Differential Geometry, Graduate Texts in Mathematics, vol. 166, Springer-Verlag, New York, 1997 (Cartanʼs generalization of Kleinʼs Erlangen program, with a foreword by S.S. Chern), MR MR1453120 (98m:53033)

Cited by Sources:

Comments - Policy