Comptes Rendus
Probability Theory
McKean–Vlasov diffusions: From the asynchronization to the synchronization
Comptes Rendus. Mathématique, Volume 349 (2011) no. 17-18, pp. 983-986.

We make the asymptotic analysis of the unique symmetric stationary measure of a self-stabilizing process in the small-noise limit. It has been proved in previous works that this measure converges with a linear rate in the asynchronized case and in the strictly synchronized case but it is slower in the intermediate case. The aim of this Note is to zoom around this phase transition.

On procède à lʼanalyse asymptotique de lʼunique mesure stationnaire symétrique pour un processus auto-stabilisant à petit bruit. Il a été prouvé dans des travaux antécédents que cette mesure converge avec un taux linéaire dans le cas asynchrone et dans le cas strictement synchrone mais la convergence est moins rapide dans le cas intermédiaire. Le but de cette Note est de zoomer autour de cette transition de phase.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crma.2011.08.002

Julian Tugaut 1

1 Fakultät für Mathematik, Universität Bielefeld, 33615 Bielefeld, Germany
@article{CRMATH_2011__349_17-18_983_0,
     author = {Julian Tugaut},
     title = {McKean{\textendash}Vlasov diffusions: {From} the asynchronization to the synchronization},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {983--986},
     publisher = {Elsevier},
     volume = {349},
     number = {17-18},
     year = {2011},
     doi = {10.1016/j.crma.2011.08.002},
     language = {en},
}
TY  - JOUR
AU  - Julian Tugaut
TI  - McKean–Vlasov diffusions: From the asynchronization to the synchronization
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 983
EP  - 986
VL  - 349
IS  - 17-18
PB  - Elsevier
DO  - 10.1016/j.crma.2011.08.002
LA  - en
ID  - CRMATH_2011__349_17-18_983_0
ER  - 
%0 Journal Article
%A Julian Tugaut
%T McKean–Vlasov diffusions: From the asynchronization to the synchronization
%J Comptes Rendus. Mathématique
%D 2011
%P 983-986
%V 349
%N 17-18
%I Elsevier
%R 10.1016/j.crma.2011.08.002
%G en
%F CRMATH_2011__349_17-18_983_0
Julian Tugaut. McKean–Vlasov diffusions: From the asynchronization to the synchronization. Comptes Rendus. Mathématique, Volume 349 (2011) no. 17-18, pp. 983-986. doi : 10.1016/j.crma.2011.08.002. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.08.002/

[1] N. Berglund; B. Gentz The Eyring–Kramers law for potentials with nonquadratic saddles, Markov Processes Relat. Fields, Volume 16 (2010), pp. 549-598

[2] S. Herrmann; P. Imkeller; D. Peithmann Large deviations and a Kramersʼ type law for self-stabilizing diffusions, Ann. Appl. Probab., Volume 18 (2008) no. 4, pp. 1379-1423

[3] S. Herrmann; J. Tugaut Non-uniqueness of stationary measures for self-stabilizing processes, Stochastic Process. Appl., Volume 120 (2010) no. 7, pp. 1215-1246

[4] S. Herrmann; J. Tugaut Stationary measures for self-stabilizing processes: asymptotic analysis in the small noise limit, Electron. J. Probab., Volume 15 (2010), pp. 2087-2116

[5] S. Herrmann; J. Tugaut Self-stabilizing processes: uniqueness problem for stationary measures and convergence rate in the small noise limit (2009, accepted in ESAIM P&S) | HAL

[6] J. Tugaut Convergence to the equilibria for self-stabilizing processes in double-well landscape http://www.math.uni-bielefeld.de/sfb701/preprints/view/507 (Preprint, Bielefeld Universität, 2010, accepted in Annals of Probability)

[7] J. Tugaut Phase transitions of McKean–Vlasov processes in symmetric and asymmetric multi-wells landscape http://www.math.uni-bielefeld.de/sfb701/preprints/view/520 (Preprint, Bielefeld Universität, 2011)

Cited by Sources:

Supported by the DFG-funded CRC 701, Spectral Structures and Topological Methods in Mathematics, at the University of Bielefeld.

Comments - Policy