[Analyse asymptotique uniforme des polynômes de Meixner–Pollaczek avec des paramètres variables]
Dans cette Note, nous effectuons une analyse asymptotique uniforme des polynômes de Meixner–Pollaczek avec un paramètre lorsque , où est une constante. Des développements asymptotiques en termes de fonctions paraboliques cylindriques et de fonctions élémentaires sont obtenus de manière uniforme en z dans deux régions qui recouvrent tout le plan complexe.
In this Note, we study the uniform asymptotics of the Meixner–Pollaczek polynomials with varying parameter as , where is a constant. Uniform asymptotic expansions in terms of parabolic cylinder functions and elementary functions are obtained for z in two overlapping regions which together cover the whole complex plane.
Accepté le :
Publié le :
Jun Wang 1 ; Weiyuan Qiu 1 ; Roderick Wong 2
@article{CRMATH_2011__349_19-20_1031_0, author = {Jun Wang and Weiyuan Qiu and Roderick Wong}, title = {Uniform asymptotics for {Meixner{\textendash}Pollaczek} polynomials with varying parameters}, journal = {Comptes Rendus. Math\'ematique}, pages = {1031--1035}, publisher = {Elsevier}, volume = {349}, number = {19-20}, year = {2011}, doi = {10.1016/j.crma.2011.08.020}, language = {en}, }
TY - JOUR AU - Jun Wang AU - Weiyuan Qiu AU - Roderick Wong TI - Uniform asymptotics for Meixner–Pollaczek polynomials with varying parameters JO - Comptes Rendus. Mathématique PY - 2011 SP - 1031 EP - 1035 VL - 349 IS - 19-20 PB - Elsevier DO - 10.1016/j.crma.2011.08.020 LA - en ID - CRMATH_2011__349_19-20_1031_0 ER -
Jun Wang; Weiyuan Qiu; Roderick Wong. Uniform asymptotics for Meixner–Pollaczek polynomials with varying parameters. Comptes Rendus. Mathématique, Volume 349 (2011) no. 19-20, pp. 1031-1035. doi : 10.1016/j.crma.2011.08.020. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.08.020/
[1] Random matrix central limit theorems for nonintersecting random walks, Ann. Probab., Volume 35 (2007), pp. 1807-1834
[2] Asymptotics of the extreme zeros of the Meixner–Pollaczek polynomials, J. Comput. Appl. Math., Volume 82 (1997), pp. 59-78
[3] A steepest descent method for oscillatory Riemann–Hilbert problems, asymptotic for the mKdV equation, Ann. of Math., Volume 137 (1993) no. 2, pp. 295-368
[4] The isomonodromy approach to matrix models in 2D quantum gravity, Comm. Math. Phys., Volume 147 (1992), pp. 395-430
[5] Asymptotic distribution of zeros of polynomials satisfying difference equations, J. Comput. Appl. Math., Volume 150 (2003), pp. 57-70
[6] Riemann–Hilbert analysis for Laguerre polynomials with large negative parameters, Comput. Meth. Funct. Theory, Volume 1 (2001), pp. 205-233
[7] On the asymptotics of the Meixner–Pollaczek polynomials and their zeros, Constructive Approximation, Volume 17 (2001), pp. 59-90
[8] Orthogonale polynomsysteme mit einer besonderen gestalt der erzeugenden funktion, J. London Math. Soc., Volume 9 (1934), pp. 6-13
[9] Uniform asymptotic expansions for Weber parabolic cylinder functions of large orders, J. Res. Nat. Bur. Standards Sect. B, Volume 63B (1959), pp. 131-169
[10] Sur une famille de polynômes orthogonaux qui contient les polynômes dʼHermite et de Laguerre comme cas limites, C. R. Acad. Sci. Paris, Ser. I, Volume 230 (1950), pp. 1563-1565
[11] Asymptotic expansions for Riemann–Hilbert problems, Anal. Appl., Volume 6 (2008), pp. 269-298
[12] Uniform asymptotics for Jacobi polynomials with varying large negative parameters – a Riemann–Hilbert approach, Trans. Amer. Math. Soc., Volume 358 (2006), pp. 2663-2694
Cité par Sources :
Commentaires - Politique