In this Note we prove the spectral stability of a large class of finite volume schemes applied to hyperbolic systems of linear partial differential equations on multidimensional unstructured meshes. This class requires that the upwinding matrix has positive eigenvalues and is codiagonalisable with the system matrices. That includes among others the upwind and centred implicit schemes, and the upwind explicit scheme under a CFL condition.
Dans cette Note nous démontrons la stabilité spectrale dʼune grande classe de schémas volumes finis pour la résolution des systèmes hyperboliques dʼéquations aux dérivées partielles linéaires sur maillages non structurés. Cette classe requiert que la matrice de décentrement ait des valeurs propres positives et soit codiagonalisable avec les matrices du système. Elle inclut notament les schémas centré et décentré amont implicites, et le schéma décentré amont explicite sous une condition CFL.
Accepted:
Published online:
Michaël Ndjinga 1
@article{CRMATH_2011__349_19-20_1111_0, author = {Micha\"el Ndjinga}, title = {Spectral stability of finite volume schemes for linear hyperbolic systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1111--1115}, publisher = {Elsevier}, volume = {349}, number = {19-20}, year = {2011}, doi = {10.1016/j.crma.2011.09.011}, language = {en}, }
Michaël Ndjinga. Spectral stability of finite volume schemes for linear hyperbolic systems. Comptes Rendus. Mathématique, Volume 349 (2011) no. 19-20, pp. 1111-1115. doi : 10.1016/j.crma.2011.09.011. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.09.011/
[1] Reflections on the evolution of implicit Navier–Stokes algorithms, Computers & Fluids, Volume 41 (2011), pp. 15-19
[2] Comparison of upwind and centered schemes for low Mach number flows, Finite Volumes for Complex Applications VI – Problems & Perspectives, Springer Proceedings in Mathematics, vol. 4, Springer, 2011
[3] Lax theorem and finite volume schemes, Mathematics of Computation, Volume 73 (2004), p. 247
[4] Stability analysis of the cell centered finite-volume Muscl method on unstructured grids, Numerische Mathematik, Volume 113 (2009), pp. 555-600
[5] Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002
[6] Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Springer-Verlag, New York, 1984
[7] Systems of Conservation Laws I, Cambridge University Press, 1999
[8] FLICA-4: a three-dimensional two-phase flow computer code with advanced numerical methods for nuclear applications, Nuclear Engineering and Design, Volume 200 (2000), pp. 139-155
[9] Convergence de la méthode des volumes finis pour les systèmes de Friedrichs, C. R. Acad. Sci. Paris Ser. I, Volume 325 (1997), pp. 671-676
Cited by Sources:
Comments - Policy