[À propos du programme de Kac en théorie cinétique]
Dans cette Note, nous présentons les résultats principaux du travail récent Mischler and Mouhot (2011) [15], qui répond à plusieurs conjectures proposées il y a une cinquantaine dʼannées par Kac (1956) [10]. Dans ce travail Kac introduit un processus stochastique à grand nombre de particules (aujourdʼhui appelé équation maîtresse de Kac) qui converge, pour des données chaotiques, vers lʼéquation de Boltzmann spatialement homogène. Nous répondons aux trois questions suivantes soulevées dans cet article : (1) prouver la propagation du chaos pour des processus de collision réalistes (dans notre cas : sphères dures et « vraies » molécules maxwelliennes), (2) connecter les vitesses de relaxation du processus stochastique et de lʼéquation limite en obtenant des taux indépendants du nombre de particules, (3) prouver la convergence de lʼentropie en grand nombre de particules vers lʼentropie de Boltzmann pour la solution de lʼéquation limite (justification microscopique du théorème H dans ce contexte). Tous ces résultats font appel de manière cruciale à une nouvelle théorie dʼestimations quantitatives et uniformes en temps de propagation du chaos.
In this Note we present the main results from the recent work of Mischler and Mouhot (2011) [15], which answers several conjectures raised fifty years ago by Kac (1956) [10]. There Kac introduced a many-particle stochastic process (now denoted as Kacʼs master equation) which, for chaotic data, converges to the spatially homogeneous Boltzmann equation. We answer the three following questions raised in Kac (1956) [10]: (1) prove the propagation of chaos for realistic microscopic interactions (i.e. in our results: hard spheres and true Maxwell molecules); (2) relate the time scales of relaxation of the stochastic process and of the limit equation by obtaining rates independent of the number of particles; (3) prove the convergence of the many-particle entropy towards the Boltzmann entropy of the solution to the limit equation (microscopic justification of the H-theorem of Boltzmann in this context). These results crucially rely on a new theory of quantitative uniform in time estimates of propagation of chaos.
Accepté le :
Publié le :
Stéphane Mischler 1 ; Clément Mouhot 2
@article{CRMATH_2011__349_23-24_1245_0, author = {St\'ephane Mischler and Cl\'ement Mouhot}, title = {About {Kac's} program in kinetic theory}, journal = {Comptes Rendus. Math\'ematique}, pages = {1245--1250}, publisher = {Elsevier}, volume = {349}, number = {23-24}, year = {2011}, doi = {10.1016/j.crma.2011.11.012}, language = {en}, }
Stéphane Mischler; Clément Mouhot. About Kacʼs program in kinetic theory. Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1245-1250. doi : 10.1016/j.crma.2011.11.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.012/
[1] Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Sitzungsberichte der Akademie der Wissenschaften, Volume 66 (1872), pp. 275-370
[2] Lectures on Gas Theory, University of California Press, Berkeley, 1964
[3] Determination of the spectral gap for Kacʼs master equation and related stochastic evolution, Acta Math., Volume 191 (2003), pp. 1-54
[4] Entropy and chaos in the Kac model, Kinet. Relat. Models, Volume 3 (2010), pp. 85-122
[5] Monte Carlo approximations and fluctuations for 2D Boltzmann equations without cutoff, Markov Process. Related Fields, Volume 7 (2001), pp. 159-191
[6] A stochastic particle numerical method for 3D Boltzmann equation without cutoff, Math. Comp., Volume 71 (2002), pp. 583-604
[7] Stochastic particle approximations for generalized Boltzmann models and convergence estimates, Ann. Probab., Volume 25 (1997), pp. 115-132
[8] Propagation of chaos for the Boltzmann equation, Arch. Ration. Mech. Anal., Volume 42 (1971), pp. 323-345
[9] Spectral gap for Kacʼs model of Boltzmann equation, Ann. Probab., Volume 29 (2001), pp. 288-304
[10] Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, University of California Press, Berkeley, Los Angeles, 1956, pp. 171-197
[11] Probability and Related Topics in Physical Sciences, Interscience Publishers, London, New York, 1959
[12] The eigenvalues of Kacʼs master equation, Math. Z., Volume 243 (2003), pp. 291-331
[13] On the dynamical theory of gases, Philos. Trans. R. Soc. Lond. Ser. A, Volume 157 (1867), pp. 49-88
[14] An exponential formula for solving Boltzmannʼs equation for a Maxwellian gas, J. Combin. Theory, Volume 2 (1967), pp. 358-382
[15] Kacʼs program in kinetic theory, 2011 (preprint) | arXiv
[16] A new approach to quantitative propagation of chaos for drift, diffusion and jump processes, 2011 (preprint) | arXiv
[17] Équations de type de Boltzmann, spatialement homogènes, Z. Wahrsch. Verw. Gebiete, Volume 66 (1984), pp. 559-592
[18] Topics in propagation of chaos, École dʼÉté de Probabilités de Saint-Flour XIX–1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 165-251
[19] Some probabilistic problems in the spatially homogeneous Boltzmann equation, Lecture Notes in Control and Inform. Sci., vol. 49, Springer, Berlin, 1983, pp. 258-267
Cité par Sources :
Commentaires - Politique