Comptes Rendus
Partial Differential Equations/Probability Theory
About Kacʼs program in kinetic theory
[À propos du programme de Kac en théorie cinétique]
Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1245-1250.

Dans cette Note, nous présentons les résultats principaux du travail récent Mischler and Mouhot (2011) [15], qui répond à plusieurs conjectures proposées il y a une cinquantaine dʼannées par Kac (1956) [10]. Dans ce travail Kac introduit un processus stochastique à grand nombre de particules (aujourdʼhui appelé équation maîtresse de Kac) qui converge, pour des données chaotiques, vers lʼéquation de Boltzmann spatialement homogène. Nous répondons aux trois questions suivantes soulevées dans cet article : (1) prouver la propagation du chaos pour des processus de collision réalistes (dans notre cas : sphères dures et « vraies » molécules maxwelliennes), (2) connecter les vitesses de relaxation du processus stochastique et de lʼéquation limite en obtenant des taux indépendants du nombre de particules, (3) prouver la convergence de lʼentropie en grand nombre de particules vers lʼentropie de Boltzmann pour la solution de lʼéquation limite (justification microscopique du théorème H dans ce contexte). Tous ces résultats font appel de manière cruciale à une nouvelle théorie dʼestimations quantitatives et uniformes en temps de propagation du chaos.

In this Note we present the main results from the recent work of Mischler and Mouhot (2011) [15], which answers several conjectures raised fifty years ago by Kac (1956) [10]. There Kac introduced a many-particle stochastic process (now denoted as Kacʼs master equation) which, for chaotic data, converges to the spatially homogeneous Boltzmann equation. We answer the three following questions raised in Kac (1956) [10]: (1) prove the propagation of chaos for realistic microscopic interactions (i.e. in our results: hard spheres and true Maxwell molecules); (2) relate the time scales of relaxation of the stochastic process and of the limit equation by obtaining rates independent of the number of particles; (3) prove the convergence of the many-particle entropy towards the Boltzmann entropy of the solution to the limit equation (microscopic justification of the H-theorem of Boltzmann in this context). These results crucially rely on a new theory of quantitative uniform in time estimates of propagation of chaos.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crma.2011.11.012
Stéphane Mischler 1 ; Clément Mouhot 2

1 Ceremade (UMR CNRS no. 7534), Université Paris-Dauphine, Place de-Lattre-de-Tassigny, 75775 Paris cedex 16, France
2 DPMMS, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB2 0WA, UK
@article{CRMATH_2011__349_23-24_1245_0,
     author = {St\'ephane Mischler and Cl\'ement Mouhot},
     title = {About {Kac's} program in kinetic theory},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1245--1250},
     publisher = {Elsevier},
     volume = {349},
     number = {23-24},
     year = {2011},
     doi = {10.1016/j.crma.2011.11.012},
     language = {en},
}
TY  - JOUR
AU  - Stéphane Mischler
AU  - Clément Mouhot
TI  - About Kacʼs program in kinetic theory
JO  - Comptes Rendus. Mathématique
PY  - 2011
SP  - 1245
EP  - 1250
VL  - 349
IS  - 23-24
PB  - Elsevier
DO  - 10.1016/j.crma.2011.11.012
LA  - en
ID  - CRMATH_2011__349_23-24_1245_0
ER  - 
%0 Journal Article
%A Stéphane Mischler
%A Clément Mouhot
%T About Kacʼs program in kinetic theory
%J Comptes Rendus. Mathématique
%D 2011
%P 1245-1250
%V 349
%N 23-24
%I Elsevier
%R 10.1016/j.crma.2011.11.012
%G en
%F CRMATH_2011__349_23-24_1245_0
Stéphane Mischler; Clément Mouhot. About Kacʼs program in kinetic theory. Comptes Rendus. Mathématique, Volume 349 (2011) no. 23-24, pp. 1245-1250. doi : 10.1016/j.crma.2011.11.012. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.11.012/

[1] L. Boltzmann Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, Sitzungsberichte der Akademie der Wissenschaften, Volume 66 (1872), pp. 275-370

[2] L. Boltzmann Lectures on Gas Theory, University of California Press, Berkeley, 1964

[3] E.A. Carlen; M.C. Carvalho; M. Loss Determination of the spectral gap for Kacʼs master equation and related stochastic evolution, Acta Math., Volume 191 (2003), pp. 1-54

[4] E.A. Carlen; M.C. Carvalho; J. Le Roux; M. Loss; C. Villani Entropy and chaos in the Kac model, Kinet. Relat. Models, Volume 3 (2010), pp. 85-122

[5] N. Fournier; S. Méléard Monte Carlo approximations and fluctuations for 2D Boltzmann equations without cutoff, Markov Process. Related Fields, Volume 7 (2001), pp. 159-191

[6] N. Fournier; S. Méléard A stochastic particle numerical method for 3D Boltzmann equation without cutoff, Math. Comp., Volume 71 (2002), pp. 583-604

[7] C. Graham; S. Méléard Stochastic particle approximations for generalized Boltzmann models and convergence estimates, Ann. Probab., Volume 25 (1997), pp. 115-132

[8] F.A. Grünbaum Propagation of chaos for the Boltzmann equation, Arch. Ration. Mech. Anal., Volume 42 (1971), pp. 323-345

[9] E. Janvresse Spectral gap for Kacʼs model of Boltzmann equation, Ann. Probab., Volume 29 (2001), pp. 288-304

[10] M. Kac Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, University of California Press, Berkeley, Los Angeles, 1956, pp. 171-197

[11] M. Kac Probability and Related Topics in Physical Sciences, Interscience Publishers, London, New York, 1959

[12] D.K. Maslen The eigenvalues of Kacʼs master equation, Math. Z., Volume 243 (2003), pp. 291-331

[13] J.C. Maxwell On the dynamical theory of gases, Philos. Trans. R. Soc. Lond. Ser. A, Volume 157 (1867), pp. 49-88

[14] H.P. McKean An exponential formula for solving Boltzmannʼs equation for a Maxwellian gas, J. Combin. Theory, Volume 2 (1967), pp. 358-382

[15] S. Mischler; C. Mouhot Kacʼs program in kinetic theory, 2011 (preprint) | arXiv

[16] S. Mischler; C. Mouhot; B. Wennberg A new approach to quantitative propagation of chaos for drift, diffusion and jump processes, 2011 (preprint) | arXiv

[17] A.-S. Sznitman Équations de type de Boltzmann, spatialement homogènes, Z. Wahrsch. Verw. Gebiete, Volume 66 (1984), pp. 559-592

[18] A.-S. Sznitman Topics in propagation of chaos, École dʼÉté de Probabilités de Saint-Flour XIX–1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 165-251

[19] H. Tanaka Some probabilistic problems in the spatially homogeneous Boltzmann equation, Lecture Notes in Control and Inform. Sci., vol. 49, Springer, Berlin, 1983, pp. 258-267

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Convergence to the equilibrium for the Pauli equation without detailed balance condition

Naoufel Ben Abdallah; Miguel Escobedo; Stéphane Mischler

C. R. Math (2005)


Fast methods for the Boltzmann collision integral

Clément Mouhot; Lorenzo Pareschi

C. R. Math (2004)